/** * CraptEV1 * Copyright (c) 2015-2016 blapost@gmail.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted for non-commercial use only. * * No redistribution. No modifications. */ #include "craptev1.h" static uint8_t halfsum[2][1 << 20]; static uint8_t filterflip[1 << 20]; static uint8_t filterlut[1 << 20]; static uint32_t hsum_off[2][0x89]; static double prob[257]; void __attribute__((constructor)) craptev1_init() { uint32_t i, j, s, t, p, q; uint32_t esum, osum; uint64_t ocnt[9] = {0}, ecnt[9] = {0}; if(**halfsum) return; for(i = 0; i < 1 << 20; i++) { osum = esum = 0; for(j = 0; j < 1 << 4; j++) { s = i << 4 | j; t = filter(s) ^ filter(s >> 1) ^ filter(s >> 2) ^ filter(s >> 3); osum += t ^ filter(i); esum += t; } halfsum[0][i] = esum >> 1; halfsum[1][i] = osum >> 1; ecnt[esum >> 1]++; ocnt[osum >> 1]++; filterflip[i] = filter(i) ^ filter(i ^ 1); filterlut[i] = filter(i); } for(p = 0; p < 9; ++p) for(q = 0; q < 9; ++q) prob[8 * (4 * p + 4 * q - p * q)] += ecnt[p] * ocnt[q]; for(i = 0; i < 257; ++i) prob[i] /= 1ull << 40; for(j = 0; j < 1 << 4; ++j) for(i = 0; i < 1 << 20; ++i) { hsum_off[0][halfsum[0][j << 16 | i >> 4] << 4 | halfsum[0][i]]++; hsum_off[1][halfsum[1][j << 16 | i >> 4] << 4 | halfsum[1][i]]++; } } #define filter(x) (filterlut[(x) & 0xfffff]) #define LF_POLY (0x8708040029CE5C) #define ROR(x, n) ((x) >> (n) | (x) << (32 - (n))) #define DIVIDE(s, p) ROR((unsigned)(((int)(s - (p) * 32)) / (int)(4 - (p))), 3) #define FACTOR(s, p) ((s & 1) || ((p) == 4 ? s == 128 : DIVIDE(s, (p)) < 9)) /** getsum0 * Calculate the sum property at time zero */ uint32_t getsum0(uint64_t *nonce) { uint32_t unique[256] = {0}; uint32_t i, numfound = 0 , sum = 0; for(i = 0; nonce[i] != -1 && numfound < 256; ++i) if(!unique[0xff & nonce[i]]) { sum += parity(0xff & nonce[i]) ^ BIT(nonce[i], 32); unique[0xff & nonce[i]] = 1; numfound++; } return numfound == 256 ? sum : -1; } /** eliminate * build initial sorted candidate list based on sumproperties */ uint32_t* eliminate(uint32_t sum0, uint32_t sum8, uint32_t isodd) { uint32_t y, yy, *set, p, r, *wrt[0x89] = {0}, *w, irr8 = sum8 >> 1 == 64; uint8_t *hsum = halfsum[isodd], i, irr0 = sum0 >> 1 == 64; set = w = malloc((sizeof(uint32_t) << 24) + 4); for(p = 0; p != 4 && !irr0; p = (p + 1) * 2 % 11) for(r = 0; r != 4; r = (r + 1) * 2 % 11) if(FACTOR(sum0, p) && FACTOR(sum8, r)) w = (wrt[p << 4 | r] = w) + hsum_off[isodd][p << 4 | r]; for(r = 0; r != 4 && irr0; r = (r + 1) * 2 % 11) for(p = 0; p != 4; p = (p + 1) * 2 % 11) if(FACTOR(sum0, p) && FACTOR(sum8, r)) w = (wrt[p << 4 | r] = w) + hsum_off[isodd][p << 4 | r]; for(p = 0; p != 4; p = (p + 1) * 2 % 11) if(FACTOR(sum0, p) && FACTOR(sum8, 4)) w = (wrt[p << 4 | 4] = w) + hsum_off[isodd][p << 4 | 4]; for(p = 0; p < 9; p = (p + 1) * 2 % 11) if(FACTOR(sum0, 4) && FACTOR(sum8, p)) w = (wrt[64 | p] = w) + hsum_off[isodd][64 | p]; for(y = 0; y < 1 << 20; ++y) for(yy = 0; yy < 1 << 4; ++yy) if(wrt[i = (p = hsum[yy << 16 | y >> 4]) << 4 | (r = hsum[y])]) { *wrt[i] = (irr0 ? p == 4 : p) << 28 | (irr8 ? r == 4 : r) << 24; *wrt[i]++ |= yy << 20 | y; } return *w = -1, set; } /** differential * prune more states using filter flips and differential analysis */ uint32_t differential(uint32_t *list, uint32_t isodd, uint8_t byte, uint8_t bbyte, uint16_t bsum8, uint32_t flip) { uint32_t j, possible, k, invariant, i; uint32_t y, yprime, lsb, jdiv; uint32_t *read, *write, bit; uint8_t *hsum = halfsum[isodd]; if(!flip && (bsum8 & 1)) return 0; for(i = 0; i < 8 && BIT(byte, i) == BIT(bbyte, i); ++i); k = (8 - i + !!isodd) >> 1; for(write = read = list; *read != -1; ++read){ y = *read; yprime = *read & ~((1 << k) - 1); for(j = i, jdiv = k; j < 7 + !!isodd; ++j) { invariant = BIT(byte, j) ^ BIT(bbyte, j); invariant ^= BIT(y, 2 + jdiv) ^ BIT(yprime, 2 + jdiv); invariant ^= filter(y >> jdiv) ^ filter(yprime >> jdiv); if((j & 1) != !!isodd && invariant != 0) break; j += (j & 1) != !!isodd; jdiv--; bit = BIT(y, jdiv); bit ^= BIT(byte, j) ^ BIT(bbyte, j); bit ^= BIT(y, 3 + jdiv) ^ BIT(yprime, 3 + jdiv); bit ^= BIT(y, 4 + jdiv) ^ BIT(yprime, 4 + jdiv); yprime |= bit << jdiv; } for(lsb = possible = 0; lsb < 1 << jdiv; ++lsb){ if(FACTOR(bsum8, hsum[0xfffff & (yprime | lsb)])) if((flip & 1) == 0 || filterflip[0xfffff & (yprime | lsb)]) if((flip & 2) == 0 || filterflip[0xfffff & (yprime | lsb) >> 1]) if((flip & 4) == 0 || filterflip[0xfffff & (yprime | lsb) >> 2]) if((flip & 16) == 0 || !filterflip[0xfffff & (yprime | lsb)]) if((flip & 32) == 0 || !filterflip[0xfffff & (yprime | lsb) >> 1]) if((flip & 64) == 0 || !filterflip[0xfffff & (yprime | lsb) >> 2]) possible = 1; } if(possible) *write++ = y; } *write = -1; return (uint32_t)(read - write); } /** binom * calculate the binomial coefficient */ static double binom(uint32_t n, uint32_t k) { double num = 1.0; uint32_t i, t = (n - k > k) ? n - k : k; if(k > n) return 0; for(i = t + 1; i <= n; ++i) num *= i; for(i = 2; i <= n - t; ++i) num /= i; return num; } /** predictsum * passable prediction logic based on hypergeometric distribution */ static uint32_t predictsum(uint64_t *nonces, uint8_t byte, uint32_t *conf) { uint32_t k, K, n, N = 256, bestK = 0, i; uint8_t seen[256] = {0}, nonceb1, nonceb2; double num, sum = 0.0, max = 0.0; for(i = k = n = 0; nonces[i] != -1; ++i){ nonceb1 = nonces[i]; nonceb2 = nonces[i] >> 8; if(nonceb1 == byte && !seen[nonceb2]) { seen[nonceb2] = 1; ++n; k += parity(nonceb2) ^ BIT(nonces[i], 40); } } for(K = 0; K <= 256; K += 1) { num = binom(K, k) * (binom(N - K, n - k) / binom(N, n)); sum += num * prob[K]; max = (num > max) ? bestK = K, num : max; } *conf = 100.0 * max * prob[bestK] / sum + 0.5; return bestK; } /** getpredictions * guess the sumproperty at time 8 for all possible first 8 bits */ uint32_t getpredictions(uint64_t *nonces, int tresh, uint32_t *pred) { uint32_t i, none = 1, conf, sum8; for(i = 0; i < 256; ++i){ sum8 = predictsum(nonces, i, &conf); none &= pred[i] = (conf >= tresh) ? sum8 | conf << 16 : 129; } return !none; } /** bestb * poor heuristic to find reasonable base for differential analysis */ uint8_t bestb(uint32_t *pred) { uint32_t i, j, h, k; uint32_t max = 0; for(i = 0; i < 256; ++i) { if(pred[i] & 1) continue; for(j = 0, h = i; j < 256; ++j) { if(i == j || (pred[j] & 1)) continue; for(k = 0; k < 8 && BIT(i, k) == BIT(j, k); ++k); h += k << 8; } max = (h > max) ? h : max; } return max; } /** findflips * Detect some filter flip conditions */ uint32_t findflips(uint64_t *nonces, uint32_t *flips) { uint32_t parities[256] = {0}; uint32_t i, status = 0; for(i = 0; nonces[i] != -1; ++i) parities[nonces[i] & 0xff] = BIT(nonces[i], 32); for(i = 0; i < 0x100; ++i){ flips[i] = 0; flips[i] |= (parities[i] == parities[i ^ 0x80]) << 0; flips[i] |= (parities[i] == parities[i ^ 0x20]) << 1; flips[i] |= (parities[i] == parities[i ^ 0x08]) << 2; flips[i] |= (parities[i] == parities[i ^ 0x40]) << 8; flips[i] |= (parities[i] == parities[i ^ 0x10]) << 9; flips[i] |= (parities[i] == parities[i ^ 0x04]) << 10; status |= flips[i]; } for(i = 0; i < 0x30; ++i) { flips[i] |= ((~flips[i] & 0x001) == 0x001) << 4; flips[i] |= ((~flips[i] & 0x101) == 0x101) << 12; flips[i] |= ((~flips[i] & 0x103) == 0x103) << 5; flips[i] |= ((~flips[i] & 0x303) == 0x303) << 13; flips[i] |= ((~flips[i] & 0x307) == 0x307) << 6; flips[i] |= ((~flips[i] & 0x707) == 0x707) << 14; } for(i = 0; i < 0x100; ++i){ if(status & 1 << 0) flips[i] &= ~0x6066; if(status & 1 << 1) flips[i] &= ~0x4044; if(status & 1 << 8) flips[i] &= ~0x6640; if(status & 1 << 9) flips[i] &= ~0x4400; if((status & 7) == 7) flips[i] &= ~0x400; } return status; } static void __lfsr_rollback(uint64_t *s, uint32_t in) { uint32_t bit, i; uint64_t state = *s; for(i = 0; i < 8; ++i) { bit = state & 1; state = state >> 32 | (state & 0xffffff) << 31; bit ^= parity64(LF_POLY & state); bit ^= in >> (7 - i); bit ^= filter(state); state |= (uint64_t)bit << 55; } *s = state; } static uint8_t inline paritycheck(uint64_t *s, uint32_t in) { uint32_t feedin, i; uint8_t ret = in >> 8; for(i = 0; i < 8; ++i) { ret ^= feedin = filter(*s); feedin ^= parity64(LF_POLY & *s) ^ in >> i; *s = *s << 32 | (uint32_t)(*s >> 31); *s &= ~1ull; *s |= feedin & 1; } return ret ^ filter(*s); } #define FOR_EACH_BYTE(X) (X) && (X) && (X) && (X) uint64_t brute(uint32_t **task) { uint32_t *oe = task[2], *p, i; uint64_t *e, *eb, *ee, savestate, state, o, key; eb = ee = malloc((1 << 20) + sizeof(uint64_t) * (task[4] - task[3])); for(p = task[3]; p < task[4]; ++p) { *ee = (uint64_t)*p << 32; __lfsr_rollback(ee++, **task); } for(; task[1] < oe; ++task[1]) { o = *task[1]; __lfsr_rollback(&o, 0); for(e = eb; e < ee; ++e) { state = savestate = o ^ *e; i = 0; p = task[0] + 10; while(FOR_EACH_BYTE(!paritycheck(&state, *p++))) { state = savestate; if(++i == 100) goto out; } } } free(eb); return -1; out: free(eb); for(key = 0, i = 23; i < 24; --i) key = key << 2 | BIT(state, i ^ 3) << 1 | BIT(state, 32 | (i ^ 3)); return key; } /** sumsplit * Split sorted list of candidates into ranges. Based on msb. */ void sumsplit(uint32_t *list, uint32_t **ranges, uint32_t sum0, uint32_t sum8) { uint32_t *last, p, i; ranges[*list >> 24] = list; for(last = list; *last != -1; ++last) if(!ranges[*last >> 24]) { ranges[*last >> 24] = last; ranges[256 | *(last - 1) >> 24] = last; } ranges[256 | *(last - 1) >> 24] = last; for(i = 0, p = 1; i < 16 && sum0 >> 1 == 64; i += p ^= 1) ranges[p << 8 | 0x20 | i] = ranges[p << 8 | 0x10 | i]; for(i = 0; i < 32 && sum8 >> 1 == 64; ++i) ranges[i << 4 | 2] = ranges[i << 4 | 1]; for(i = 0; i < 32 && (sum8 & 1); ++i) ranges[i << 4 | 3] = ranges[i << 4]; } /** mkspace * split candidate lists into list of lists by matching halfsums */ uint32_t **mkspace(uint32_t *o, uint32_t *e, uint32_t sum0, uint32_t sum8) { uint32_t *ohead[512] = {0}, **otail = ohead + 256, p, q, r, s; uint32_t *ehead[512] = {0}, **etail = ehead + 256, **jobs, **j; sumsplit(o, ohead, sum0, sum8); sumsplit(e, ehead, sum0, sum8); j = 1024 + (jobs = malloc(sizeof(uint32_t*) << 14)); *j++ = o; *j++ = e; for(p = 0; p != 4; p = (p + 1) * 2 % 11) { for(r = 0; r != 4; r = (r + 1) * 2 % 11) { q = (sum0 >> 1 == 64) ? !(p & 1) : DIVIDE(sum0, p); s = (sum8 >> 1 == 64) ? !(r & 1) : DIVIDE(sum8, r); if(q < 9 && s < 9 && ohead[p << 4 | r] && ehead[q << 4 | s]) { *j++ = (uint32_t*)jobs; *j++ = ohead[p << 4 | r]; *j++ = otail[p << 4 | r]; *j++ = ehead[q << 4 | s]; *j++ = etail[q << 4 | s]; } } } return *j = 0, jobs; } /** craptev1_get_space * Derive reduced search space from list of nested nonces. * - returns a zero terminated list of partitions (5 pointers each) * add 5 to the return value to get a pointer to the second partition. * - uid is stored for use by search functions, it can be omitted. */ uint32_t** craptev1_get_space(uint64_t *nonces, uint32_t tresh, uint32_t uid) { uint32_t sum0, sum8, pred[256], haspred, flips[256]; uint32_t *olist, *elist, i, **space, byte, *pre, b; uint64_t t; sum0 = getsum0(nonces); if(sum0 == -1) return 0; haspred = getpredictions(nonces, tresh, pred); byte = haspred ? bestb(pred): 0xa5; sum8 = pred[byte] & 0xffff; findflips(nonces, flips); olist = eliminate(sum0, sum8, 1); elist = eliminate(sum0, sum8, 0); for(i = 0; i < 256; ++i) { differential(olist, 1, byte, i, pred[i], flips[i] & 255); differential(elist, 0, byte, i, pred[i], flips[i] >> 8); } space = mkspace(olist, elist, sum0, sum8); pre = (uint32_t*)space; pre[0] = byte ^ uid >> 24; pre[1] = uid; for(i = 0, pre += 10; i < 400;) for(b = 24, t = *nonces++; b < 32; b -= 8, t >>= 8, ++i) pre[i] = parity((t ^ t >> 32) & 255) << 8 | ((t ^ uid >> b) & 255); return space + 1026; } /** craptev1_sizeof_space * Calculate the size of the search space */ uint64_t craptev1_sizeof_space(uint32_t **space) { uint64_t i, c = 0, o, e; for(i = 0; space[i]; i += 5) { o = space[i + 2] - space[i + 1]; e = space[i + 4] - space[i + 3]; c += o * e; } return c; } /** craptev1_destroy_space * Free all memory associated with a search space. */ void craptev1_destroy_space(uint32_t **space) { free(*--space); free(*--space); free(space - 1024); } /** craptev1_search_partition * Search one partition of the search space. Return key if found. */ uint64_t craptev1_search_partition(uint32_t **partition) { return brute(partition); } /** craptev1_search_space * Search entire search space.Return key if found. */ uint64_t craptev1_search_space(uint32_t **space) { uint64_t i, key = -1; for(i = 0; space[i] && key == -1; i += 5) key = brute(space + i); return key; }