// Bit-sliced Crypto-1 brute-forcing implementation // Builds on the data structures returned by CraptEV1 craptev1_get_space(nonces, threshold, uid) /* Copyright (c) 2015-2016 Aram Verstegen Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #ifndef __APPLE__ #include #endif #include "crypto1_bs_crack.h" inline uint64_t crack_states_bitsliced(uint32_t **task){ // the idea to roll back the half-states before combining them was suggested/explained to me by bla // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop uint64_t key = -1; #ifdef EXACT_COUNT size_t bucket_states_tested = 0; size_t bucket_size[(task[4]-task[3])/MAX_BITSLICES]; #else const size_t bucket_states_tested = (task[4]-task[3])*(task[2]-task[1]); #endif // bitslice all the even states bitslice_t * restrict bitsliced_even_states[(task[4]-task[3])/MAX_BITSLICES]; size_t bitsliced_blocks = 0; for(uint32_t const * restrict p_even = task[3]; p_even < task[4]; p_even+=MAX_BITSLICES){ #ifdef __WIN32 #ifdef __MINGW32__ bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t), sizeof(bitslice_t)); #else bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t), sizeof(bitslice_t)); #endif #else #ifdef __APPLE__ bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t)); #else bitslice_t * restrict lstate_p = memalign(sizeof(bitslice_t), (STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t)); #endif #endif memset(lstate_p, 0x0, (STATE_SIZE)*sizeof(bitslice_t)); // bitslice even half-states const size_t max_slices = (task[4]-p_even) < MAX_BITSLICES ? task[4]-p_even : MAX_BITSLICES; #ifdef EXACT_COUNT bucket_size[bitsliced_blocks] = max_slices; #endif for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){ // set even bits uint32_t e = *(p_even+slice_idx); for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){ if(e&1){ lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63); } } } // compute the rollback bits for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){ // inlined crypto1_bs_lfsr_rollback const bitslice_value_t feedout = lstate_p[0].value; ++lstate_p; const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p); const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^ lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^ lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^ lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^ lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^ lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value); lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value; } bitsliced_even_states[bitsliced_blocks++] = lstate_p; } // bitslice every odd state to every block of even half-states with half-finished rollback for(uint32_t const * restrict p_odd = task[1]; p_odd < task[2]; ++p_odd){ // early abort if(keys_found){ goto out; } // set the odd bits and compute rollback uint64_t o = (uint64_t) *p_odd; lfsr_rollback_byte(&o, 0, 1); // pre-compute part of the odd feedback bits (minus rollback) bool odd_feedback_bit = parity(o&0x9ce5c); crypto1_bs_rewind_a0(); // set odd bits for(size_t state_idx = 0; state_idx < (STATE_SIZE-ROLLBACK_SIZE); o >>= 1, state_idx+=2){ if(o & 1){ state_p[state_idx] = bs_ones; } else { state_p[state_idx] = bs_zeroes; } } const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value; // set even and rollback bits for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx]; size_t state_idx; // set even bits for(state_idx = 0; state_idx < (STATE_SIZE-ROLLBACK_SIZE); state_idx+=2){ state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; } // set rollback bits uint64_t lo = o; for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){ // set the odd bits and take in the odd rollback bits from the even states if(lo & 1){ state_p[state_idx].value = ~bitsliced_even_state[state_idx].value; } else { state_p[state_idx] = bitsliced_even_state[state_idx]; } // set the even bits and take in the even rollback bits from the odd states if((lo >> 32) & 1){ state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value; } else { state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; } } // Fix a "1000000% bug". Looks like here is a problem with OS X gcc size_t current_bucket_size = bucket_size[block_idx] > MAX_BITSLICES ? MAX_BITSLICES : bucket_size[block_idx]; #ifdef EXACT_COUNT bucket_states_tested += current_bucket_size; #ifdef ONLINE_COUNT __atomic_fetch_add(&total_states_tested, current_bucket_size, __ATOMIC_RELAXED); #endif #else #ifdef ONLINE_COUNT __atomic_fetch_add(&total_states_tested, MAX_BITSLICES, __ATOMIC_RELAXED); #endif #endif // pre-compute first keystream and feedback bit vectors const bitslice_value_t ksb = crypto1_bs_f20(state_p); const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ state_p[47-24].value ^ state_p[47-42].value); // vector to contain test results (1 = passed, 0 = failed) bitslice_t results = bs_ones; for(size_t tests = 0; tests < NONCE_TESTS; ++tests){ size_t parity_bit_idx = 0; bitslice_value_t fb_bits = fbb; bitslice_value_t ks_bits = ksb; state_p = &states[KEYSTREAM_SIZE-1]; bitslice_value_t parity_bit_vector = bs_zeroes.value; // highest bit is transmitted/received first for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){ // decrypt nonce bits const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value; const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits); // compute real parity bits on the fly parity_bit_vector ^= decrypted_nonce_bit_vector; // update state state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector); // compute next keystream bit ks_bits = crypto1_bs_f20(state_p); // for each byte: if((ks_idx&7) == 0){ // get encrypted parity bits const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value; // decrypt parity bits const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits); // compare actual parity bits with decrypted parity bits and take count in results vector results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector); // make sure we still have a match in our set // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){ // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ??? // the short-circuiting also helps if(results.bytes64[0] == 0 #if MAX_BITSLICES > 64 && results.bytes64[1] == 0 #endif #if MAX_BITSLICES > 128 && results.bytes64[2] == 0 && results.bytes64[3] == 0 #endif ){ goto stop_tests; } // this is about as fast but less portable (requires -std=gnu99) // asm goto ("ptest %1, %0\n\t" // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests); parity_bit_vector = bs_zeroes.value; } // compute next feedback bit vector fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^ state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^ state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^ state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value); } } // all nonce tests were successful: we've found the key in this block! state_t keys[MAX_BITSLICES]; crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys); for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){ if(get_vector_bit(results_idx, results)){ key = keys[results_idx].value; __atomic_fetch_add(&keys_found, 1, __ATOMIC_RELAXED); goto out; } } stop_tests: // prepare to set new states crypto1_bs_rewind_a0(); continue; } } out: for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ #ifdef __WIN32 #ifdef __MINGW32__ __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); #else _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); #endif #else free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); #endif } #ifndef ONLINE_COUNT __atomic_fetch_add(&total_states_tested, bucket_states_tested, __ATOMIC_RELAXED); #endif return key; }