359 lines
16 KiB
Diff
359 lines
16 KiB
Diff
diff --git a/client/Makefile b/client/Makefile
|
|
index 91e595d..dc3557f 100644
|
|
--- a/client/Makefile
|
|
+++ b/client/Makefile
|
|
@@ -107,6 +107,7 @@ CMDSRCS = nonce2key/crapto1.c\
|
|
aes.c\
|
|
protocols.c\
|
|
sha1.c\
|
|
+ crypto1_bs.c \
|
|
|
|
ZLIBSRCS = deflate.c adler32.c trees.c zutil.c inflate.c inffast.c inftrees.c
|
|
ZLIB_FLAGS = -DZ_SOLO -DZ_PREFIX -DNO_GZIP -DZLIB_PM3_TUNED
|
|
diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c
|
|
index b3893ea..4a0bd38 100644
|
|
--- a/client/cmdhfmfhard.c
|
|
+++ b/client/cmdhfmfhard.c
|
|
@@ -20,18 +20,21 @@
|
|
#include <pthread.h>
|
|
#include <locale.h>
|
|
#include <math.h>
|
|
+#include <malloc.h>
|
|
+#include <assert.h>
|
|
#include "proxmark3.h"
|
|
#include "cmdmain.h"
|
|
#include "ui.h"
|
|
#include "util.h"
|
|
#include "nonce2key/crapto1.h"
|
|
#include "parity.h"
|
|
+#include "crypto1_bs.h"
|
|
|
|
// uint32_t test_state_odd = 0;
|
|
// uint32_t test_state_even = 0;
|
|
|
|
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
|
|
-#define GOOD_BYTES_REQUIRED 30
|
|
+#define GOOD_BYTES_REQUIRED 28
|
|
|
|
|
|
static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
|
|
@@ -88,6 +91,8 @@ typedef struct noncelist {
|
|
} noncelist_t;
|
|
|
|
|
|
+static size_t nonces_to_bruteforce = 0;
|
|
+static noncelistentry_t *brute_force_nonces[256];
|
|
static uint32_t cuid;
|
|
static noncelist_t nonces[256];
|
|
static uint8_t best_first_bytes[256];
|
|
@@ -169,6 +174,11 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
|
|
p2->nonce_enc = nonce_enc;
|
|
p2->par_enc = par_enc;
|
|
|
|
+ if(nonces_to_bruteforce < 256){
|
|
+ brute_force_nonces[nonces_to_bruteforce] = p2;
|
|
+ nonces_to_bruteforce++;
|
|
+ }
|
|
+
|
|
nonces[first_byte].num++;
|
|
nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
|
|
nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
|
|
@@ -1376,19 +1386,293 @@ static void free_statelist_cache(void)
|
|
}
|
|
}
|
|
|
|
+size_t keys_found = 0;
|
|
+size_t bucket_count = 0;
|
|
+statelist_t* buckets[128];
|
|
+size_t total_states_tested = 0;
|
|
+size_t thread_count = 4;
|
|
+
|
|
+// these bitsliced states will hold identical states in all slices
|
|
+bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
|
|
+
|
|
+// arrays of bitsliced states with identical values in all slices
|
|
+bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
|
|
+bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
|
|
+
|
|
+#define EXACT_COUNT
|
|
+
|
|
+static const uint64_t crack_states_bitsliced(statelist_t *p){
|
|
+ // the idea to roll back the half-states before combining them was suggested/explained to me by bla
|
|
+ // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
|
|
+ uint64_t key = -1;
|
|
+#ifdef EXACT_COUNT
|
|
+ size_t bucket_states_tested = 0;
|
|
+ size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
|
|
+#else
|
|
+ const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
|
|
+#endif
|
|
+ bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
|
|
+ size_t bitsliced_blocks = 0;
|
|
+ uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
|
|
+ for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even+=MAX_BITSLICES){
|
|
+ bitslice_t * restrict lstate_p = memalign(sizeof(bitslice_t), (STATE_SIZE+ROLLBACK_SIZE)*sizeof(bitslice_t));
|
|
+ memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
|
|
+ // bitslice even half-states
|
|
+ const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
|
|
+#ifdef EXACT_COUNT
|
|
+ bucket_size[bitsliced_blocks] = max_slices;
|
|
+#endif
|
|
+ for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
|
|
+ uint32_t e = *(p_even+slice_idx);
|
|
+ for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
|
|
+ // set even bits
|
|
+ if(e&1){
|
|
+ lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ // compute the rollback bits
|
|
+ for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
|
|
+ // inlined crypto1_bs_lfsr_rollback
|
|
+ const bitslice_value_t feedout = lstate_p[0].value;
|
|
+ ++lstate_p;
|
|
+ const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
|
|
+ const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
|
|
+ lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
|
|
+ lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
|
|
+ lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
|
|
+ lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
|
|
+ lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
|
|
+ lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
|
|
+ }
|
|
+ bitsliced_even_states[bitsliced_blocks++] = lstate_p;
|
|
+ }
|
|
+ for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
|
|
+ // early abort
|
|
+ if(keys_found){
|
|
+ goto out;
|
|
+ }
|
|
+
|
|
+ // set the odd bits and compute rollback
|
|
+ uint64_t o = (uint64_t) *p_odd;
|
|
+ lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
|
|
+ // pre-compute part of the odd feedback bits (minus rollback)
|
|
+ bool odd_feedback_bit = parity(o&0x9ce5c);
|
|
+
|
|
+ crypto1_bs_rewind_a0();
|
|
+ // set odd bits
|
|
+ for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
|
|
+ if(o & 1){
|
|
+ state_p[state_idx] = bs_ones;
|
|
+ } else {
|
|
+ state_p[state_idx] = bs_zeroes;
|
|
+ }
|
|
+ }
|
|
+ const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
|
|
+
|
|
+ for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
|
|
+ const bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx];
|
|
+ size_t state_idx;
|
|
+ // set even bits
|
|
+ for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
|
|
+ state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
|
|
+ }
|
|
+ // set rollback bits
|
|
+ uint64_t lo = o;
|
|
+ for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
|
|
+ // set the odd bits and take in the odd rollback bits from the even states
|
|
+ if(lo & 1){
|
|
+ state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
|
|
+ } else {
|
|
+ state_p[state_idx] = bitsliced_even_state[state_idx];
|
|
+ }
|
|
+
|
|
+ // set the even bits and take in the even rollback bits from the odd states
|
|
+ if((lo >> 32) & 1){
|
|
+ state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
|
|
+ } else {
|
|
+ state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
|
|
+ }
|
|
+ }
|
|
+
|
|
+#ifdef EXACT_COUNT
|
|
+ bucket_states_tested += bucket_size[block_idx];
|
|
+#endif
|
|
+ // pre-compute first keystream and feedback bit vectors
|
|
+ const bitslice_value_t ksb = crypto1_bs_f20(state_p);
|
|
+ const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
|
|
+ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
|
+ state_p[47-24].value ^ state_p[47-42].value);
|
|
+
|
|
+ // test keys
|
|
+ bitslice_t results = bs_ones;
|
|
+
|
|
+ for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
|
|
+ size_t parity_bit_idx = 0;
|
|
+ bitslice_value_t fb_bits = fbb;
|
|
+ bitslice_value_t ks_bits = ksb;
|
|
+ state_p = &states[KEYSTREAM_SIZE-1];
|
|
+ bitslice_value_t parity_bit_vector = bs_zeroes.value;
|
|
+
|
|
+ // highest bit is transmitted/received first
|
|
+ for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
|
|
+ // decrypt nonce bits
|
|
+ const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
|
|
+ const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
|
|
+
|
|
+ // compute real parity bits on the fly
|
|
+ parity_bit_vector ^= decrypted_nonce_bit_vector;
|
|
+
|
|
+ // update state
|
|
+ state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
|
|
+
|
|
+ // compute next keystream bit
|
|
+ ks_bits = crypto1_bs_f20(state_p);
|
|
+
|
|
+ // for each byte:
|
|
+ if((ks_idx&7) == 0){
|
|
+ // get encrypted parity bits
|
|
+ const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
|
|
+
|
|
+ // decrypt parity bits
|
|
+ const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
|
|
+
|
|
+ // compare actual parity bits with decrypted parity bits and take count in results vector
|
|
+ results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
|
|
+
|
|
+ // make sure we still have a match in our set
|
|
+ // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
|
|
+
|
|
+ // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
|
|
+ // the short-circuiting also helps
|
|
+ if(results.bytes64[0] == 0
|
|
+#if MAX_BITSLICES > 64
|
|
+ && results.bytes64[1] == 0
|
|
+#endif
|
|
+#if MAX_BITSLICES > 128
|
|
+ && results.bytes64[2] == 0
|
|
+ && results.bytes64[3] == 0
|
|
+#endif
|
|
+ ){
|
|
+ goto stop_tests;
|
|
+ }
|
|
+ // this is about as fast but less portable (requires -std=gnu99)
|
|
+ // asm goto ("ptest %1, %0\n\t"
|
|
+ // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
|
|
+ parity_bit_vector = bs_zeroes.value;
|
|
+ }
|
|
+ // compute next feedback bit vector
|
|
+ fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
|
+ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
|
+ state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
|
+ state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
|
+ state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
|
+ state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
|
+ }
|
|
+ }
|
|
+ // all nonce tests were successful: we've found the key in this block!
|
|
+ state_t keys[MAX_BITSLICES];
|
|
+ crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
|
|
+ for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
|
|
+ if(get_vector_bit(results_idx, results)){
|
|
+ key = keys[results_idx].value;
|
|
+ goto out;
|
|
+ }
|
|
+ }
|
|
+stop_tests:
|
|
+ // prepare to set new states
|
|
+ crypto1_bs_rewind_a0();
|
|
+ continue;
|
|
+ }
|
|
+ }
|
|
+out:
|
|
+ for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
|
|
+ free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
|
|
+ }
|
|
+ __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
|
|
+ return key;
|
|
+}
|
|
+
|
|
+static void* crack_states_thread(void* x){
|
|
+ const size_t thread_id = (size_t)x;
|
|
+ size_t current_bucket = thread_id;
|
|
+ while(current_bucket < bucket_count){
|
|
+ statelist_t * bucket = buckets[current_bucket];
|
|
+ if(bucket){
|
|
+ const uint64_t key = crack_states_bitsliced(bucket);
|
|
+ if(key != -1){
|
|
+ printf("Found key: %012lx\n", key);
|
|
+ __sync_fetch_and_add(&keys_found, 1);
|
|
+ break;
|
|
+ } else if(keys_found){
|
|
+ break;
|
|
+ } else {
|
|
+ printf("Cracking... %6.02f%%\n", (100.0*total_states_tested/(maximum_states)));
|
|
+ }
|
|
+ }
|
|
+ current_bucket += thread_count;
|
|
+ }
|
|
+ return NULL;
|
|
+}
|
|
|
|
-static void brute_force(void)
|
|
+void brute_force(void)
|
|
{
|
|
if (known_target_key != -1) {
|
|
PrintAndLog("Looking for known target key in remaining key space...");
|
|
TestIfKeyExists(known_target_key);
|
|
} else {
|
|
- PrintAndLog("Brute Force phase is not implemented.");
|
|
+ PrintAndLog("Brute force phase starting.");
|
|
+ time_t start, end;
|
|
+ time(&start);
|
|
+ keys_found = 0;
|
|
+
|
|
+ crypto1_bs_init();
|
|
+
|
|
+ PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
|
|
+ PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
|
|
+ // convert to 32 bit little-endian
|
|
+ crypto1_bs_bitslice_value32(rev32((best_first_bytes[0]^(cuid>>24))), bitsliced_rollback_byte, 8);
|
|
+
|
|
+ PrintAndLog("Bitslicing nonces...");
|
|
+ for(size_t tests = 0; tests < NONCE_TESTS; tests++){
|
|
+ uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
|
|
+ uint8_t test_parity = brute_force_nonces[tests]->par_enc;
|
|
+ // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
|
|
+ crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
|
|
+ // convert to 32 bit little-endian
|
|
+ crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
|
|
+ }
|
|
+ total_states_tested = 0;
|
|
+
|
|
+ // count number of states to go
|
|
+ bucket_count = 0;
|
|
+ for (statelist_t *p = candidates; p != NULL; p = p->next) {
|
|
+ buckets[bucket_count] = p;
|
|
+ bucket_count++;
|
|
+ }
|
|
+
|
|
+ // enumerate states using all hardware threads, each thread handles one bucket
|
|
+ PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %lu states...", thread_count, bucket_count, maximum_states);
|
|
+ pthread_t threads[thread_count];
|
|
+ thread_count = sysconf(_SC_NPROCESSORS_CONF);
|
|
+ for(size_t i = 0; i < thread_count; i++){
|
|
+ pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
|
|
+ }
|
|
+ for(size_t i = 0; i < thread_count; i++){
|
|
+ pthread_join(threads[i], 0);
|
|
+ }
|
|
+
|
|
+ time(&end);
|
|
+ unsigned long elapsed_time = difftime(end, start);
|
|
+ PrintAndLog("Tested %lu states, found %u keys after %u seconds", total_states_tested, keys_found, elapsed_time);
|
|
+ if(!keys_found){
|
|
+ assert(total_states_tested == maximum_states);
|
|
+ }
|
|
+ // reset this counter for the next call
|
|
+ nonces_to_bruteforce = 0;
|
|
}
|
|
-
|
|
}
|
|
|
|
-
|
|
int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
|
|
{
|
|
// initialize Random number generator
|