first commit
This commit is contained in:
BIN
0xcafec0de.bin
Normal file
BIN
0xcafec0de.bin
Normal file
Binary file not shown.
18
Makefile
Normal file
18
Makefile
Normal file
@ -0,0 +1,18 @@
|
||||
all:
|
||||
gcc -O3 craptev1-v1.0/solve.c -fPIC -shared -o solve.so
|
||||
gcc -O3 -mpopcnt -std=c99 solve_bs.c crypto1_bs.c crypto1_bs_crack.c -Icraptev1-v1.0 craptev1-v1.0/craptev1.c crapto1-v3.3/crapto1.c ./solve.so -o solve_bs -lpthread
|
||||
gcc -O3 -mpopcnt -std=c99 solve_piwi_bs.c crypto1_bs.c crypto1_bs_crack.c -Icraptev1-v1.0 craptev1-v1.0/craptev1.c crapto1-v3.3/crapto1.c -o solve_piwi_bs -lpthread
|
||||
gcc -O3 -mpopcnt solve_piwi.c -I craptev1-v1.0 craptev1-v1.0/craptev1.c -o solve_piwi -lpthread
|
||||
|
||||
clean:
|
||||
rm solve.so solve_bs solve_piwi_bs solve_piwi
|
||||
|
||||
get_craptev1:
|
||||
wget http://crapto1.netgarage.org/craptev1-v1.0.tar.xz
|
||||
tar Jxvf craptev1-v1.0.tar.xz
|
||||
|
||||
get_crapto1:
|
||||
wget http://crapto1.netgarage.org/crapto1-v3.3.tar.xz
|
||||
mkdir crapto1-v3.3
|
||||
tar Jxvf crapto1-v3.3.tar.xz -C crapto1-v3.3
|
||||
|
38
README.md
Normal file
38
README.md
Normal file
@ -0,0 +1,38 @@
|
||||
Bitsliced Crypto-1 brute-forcer
|
||||
===============================
|
||||
|
||||
A pure C(99) implementation of the [Crypto-1 cipher](https://en.wikipedia.org/wiki/Crypto-1) using the method of [bitslicing](https://en.wikipedia.org/wiki/Bit_slicing), which uses GNU vector extensions to be portable across SSE/AVX/AVX2 supporting architectures while offering the highest amount of possible parallelism.
|
||||
|
||||
|
||||
Background
|
||||
----------
|
||||
|
||||
I wrote this as a patch for [piwi's imlementation](https://github.com/pwpiwi/proxmark3/tree/hard_nested/) of the research documented in [Ciphertext-only cryptanalysis on Hardened Mifare Classic cards](http://www.cs.ru.nl/~rverdult/Ciphertext-only_Cryptanalysis_on_Hardened_Mifare_Classic_Cards-CCS_2015.pdf) after reading (most of) the paper, while it was still under [active development](http://www.proxmark.org/forum/viewtopic.php?id=2120).
|
||||
The final patch is included as `pwpiwi_proxmark3_hard_nested.patch`.
|
||||
|
||||
Later on, another implementation of the same attack surfaced, [CraptEV1](http://crapto1.netgarage.org/).
|
||||
I managed to gather some great tricks from that code, which unfortunately is off-line now (and has a license forbidding redistribution).
|
||||
This also allowed me to compare my Crypto-1 implementation to a finished brute-forcer, and eventually I managed to significantly beat CraptEV1's (great) performance.
|
||||
|
||||
Tools
|
||||
-----
|
||||
|
||||
If you want to use the following stand-alone binaries, you will need the original CraptEV1 / Crapto1 source packages.
|
||||
For convenience, and because redistribution of CraptEV1 is not allowed, I've added make targets `get_craptev1` and `get_crapto1` to fetch and extract these packages to the current working directory.
|
||||
I have included a conversion of the test file `0xcafec0de.txt` included in the CraptEV1 package to the binary format used by the `proxmark3/hard_nested` branch.
|
||||
|
||||
`solve_bs` is analogous to CraptEV1 `solve` and works on .txt files using the bitsliced crypto-1 cracker
|
||||
|
||||
$ ./solve_bs craptev1-v1.0/0xcafec0de.txt 0xcafec0de
|
||||
|
||||
`solve_piwi` uses CraptEV1 on .bin files as gathered by piwi's PM3 code
|
||||
|
||||
$ ./solve_piwi 0xcafec0de.bin
|
||||
|
||||
`solve_piwi_bs` does the same but uses the bitsliced cracker
|
||||
|
||||
$ ./solve_piwi_bs 0xcafec0de.bin
|
||||
|
||||
|
||||
Special thanks to Carlo Meijer, Roel Verdult, piwi and bla.
|
||||
|
94
crypto1_bs.c
Normal file
94
crypto1_bs.c
Normal file
@ -0,0 +1,94 @@
|
||||
// Bit-sliced Crypto-1 implementation (C) 2015 by Aram Verstegen
|
||||
// The cipher states are stored with the least significant bit first, hence all bit indexes are reversed here
|
||||
|
||||
#include "crypto1_bs.h"
|
||||
|
||||
// The following functions use this global or thread-local state
|
||||
// It is sized to fit exactly KEYSTREAM_SIZE more states next to the initial state
|
||||
__thread bitslice_t states[KEYSTREAM_SIZE+STATE_SIZE];
|
||||
__thread bitslice_t * restrict state_p;
|
||||
|
||||
void crypto1_bs_init(){
|
||||
// initialize constant one and zero bit vectors
|
||||
memset(bs_ones.bytes, 0xff, VECTOR_SIZE);
|
||||
memset(bs_zeroes.bytes, 0x00, VECTOR_SIZE);
|
||||
}
|
||||
|
||||
// The following functions have side effects on 48 bitslices at the state_p pointer
|
||||
// use the crypto1_bs_rewind_* macros to (re-)initialize them as needed
|
||||
|
||||
inline const bitslice_value_t crypto1_bs_bit(const bitslice_value_t input, const bool is_encrypted){
|
||||
bitslice_value_t feedback = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
||||
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
||||
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
||||
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
||||
const bitslice_value_t ks_bits = crypto1_bs_f20(state_p);
|
||||
if(is_encrypted){
|
||||
feedback ^= ks_bits;
|
||||
}
|
||||
state_p--;
|
||||
state_p[0].value = feedback ^ input;
|
||||
return ks_bits;
|
||||
}
|
||||
|
||||
inline const bitslice_value_t crypto1_bs_lfsr_rollback(const bitslice_value_t input, const bool is_encrypted){
|
||||
bitslice_value_t feedout = state_p[0].value;
|
||||
state_p++;
|
||||
const bitslice_value_t ks_bits = crypto1_bs_f20(state_p);
|
||||
if(is_encrypted){
|
||||
feedout ^= ks_bits;
|
||||
}
|
||||
const bitslice_value_t feedback = (feedout ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
||||
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
||||
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
||||
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
||||
state_p[47].value = feedback ^ input;
|
||||
return ks_bits;
|
||||
}
|
||||
|
||||
// side-effect free from here on
|
||||
// note that bytes are sliced and unsliced with reversed endianness
|
||||
inline void crypto1_bs_convert_states(bitslice_t bitsliced_states[], state_t regular_states[]){
|
||||
size_t bit_idx = 0, slice_idx = 0;
|
||||
state_t values[MAX_BITSLICES];
|
||||
for(slice_idx = 0; slice_idx < MAX_BITSLICES; slice_idx++){
|
||||
for(bit_idx = 0; bit_idx < STATE_SIZE; bit_idx++){
|
||||
bool bit = get_vector_bit(slice_idx, bitsliced_states[bit_idx]);
|
||||
values[slice_idx].value <<= 1;
|
||||
values[slice_idx].value |= bit;
|
||||
}
|
||||
// swap endianness
|
||||
values[slice_idx].value = rev_state_t(values[slice_idx].value);
|
||||
// roll off unused bits
|
||||
values[slice_idx].value >>= ((sizeof(state_t)*8)-STATE_SIZE);
|
||||
}
|
||||
memcpy(regular_states, values, sizeof(values));
|
||||
}
|
||||
|
||||
// bitslice a value
|
||||
void crypto1_bs_bitslice_value32(uint32_t value, bitslice_t bitsliced_value[], size_t bit_len){
|
||||
// load nonce bytes with unswapped endianness
|
||||
size_t bit_idx;
|
||||
for(bit_idx = 0; bit_idx < bit_len; bit_idx++){
|
||||
bool bit = get_bit(bit_len-1-bit_idx, rev32(value));
|
||||
if(bit){
|
||||
bitsliced_value[bit_idx].value = bs_ones.value;
|
||||
} else {
|
||||
bitsliced_value[bit_idx].value = bs_zeroes.value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void crypto1_bs_print_states(bitslice_t bitsliced_states[]){
|
||||
size_t slice_idx = 0;
|
||||
state_t values[MAX_BITSLICES];
|
||||
crypto1_bs_convert_states(bitsliced_states, values);
|
||||
for(slice_idx = 0; slice_idx < MAX_BITSLICES; slice_idx++){
|
||||
printf("State %03lu: %012lx\n", slice_idx, values[slice_idx].value);
|
||||
}
|
||||
}
|
||||
|
99
crypto1_bs.h
Normal file
99
crypto1_bs.h
Normal file
@ -0,0 +1,99 @@
|
||||
#ifndef _CRYPTO1_BS_H
|
||||
#define _CRYPTO1_BS_H
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
|
||||
// bitslice type
|
||||
// while AVX supports 256 bit vector floating point operations, we need integer operations for boolean logic
|
||||
// same for AVX2 and 512 bit vectors
|
||||
// using larger vectors works but seems to generate more register pressure
|
||||
#if defined(__AVX2__)
|
||||
#define MAX_BITSLICES 256
|
||||
#elif defined(__AVX__)
|
||||
#define MAX_BITSLICES 128
|
||||
#elif defined(__SSE2__)
|
||||
#define MAX_BITSLICES 128
|
||||
#else
|
||||
#define MAX_BITSLICES 64
|
||||
#endif
|
||||
|
||||
#define VECTOR_SIZE (MAX_BITSLICES/8)
|
||||
typedef unsigned int __attribute__((aligned(VECTOR_SIZE))) __attribute__((vector_size(VECTOR_SIZE))) bitslice_value_t;
|
||||
typedef union {
|
||||
bitslice_value_t value;
|
||||
uint64_t bytes64[MAX_BITSLICES/64];
|
||||
uint8_t bytes[MAX_BITSLICES/8];
|
||||
} bitslice_t;
|
||||
|
||||
// filter function (f20)
|
||||
// sourced from ``Wirelessly Pickpocketing a Mifare Classic Card'' by Flavio Garcia, Peter van Rossum, Roel Verdult and Ronny Wichers Schreur
|
||||
#define f20a(a,b,c,d) (((a|b)^(a&d))^(c&((a^b)|d)))
|
||||
#define f20b(a,b,c,d) (((a&b)|c)^((a^b)&(c|d)))
|
||||
#define f20c(a,b,c,d,e) ((a|((b|e)&(d^e)))^((a^(b&d))&((c^d)|(b&e))))
|
||||
|
||||
#define crypto1_bs_f20(s) \
|
||||
f20c(f20a((s[47- 9].value), (s[47-11].value), (s[47-13].value), (s[47-15].value)), \
|
||||
f20b((s[47-17].value), (s[47-19].value), (s[47-21].value), (s[47-23].value)), \
|
||||
f20b((s[47-25].value), (s[47-27].value), (s[47-29].value), (s[47-31].value)), \
|
||||
f20a((s[47-33].value), (s[47-35].value), (s[47-37].value), (s[47-39].value)), \
|
||||
f20b((s[47-41].value), (s[47-43].value), (s[47-45].value), (s[47-47].value)))
|
||||
|
||||
// bit indexing
|
||||
#define get_bit(n, word) ((word >> (n)) & 1)
|
||||
#define get_vector_bit(slice, value) get_bit(slice&0x3f, value.bytes64[slice>>6])
|
||||
|
||||
// constant ones/zeroes
|
||||
bitslice_t bs_ones;
|
||||
bitslice_t bs_zeroes;
|
||||
|
||||
// size of crypto-1 state
|
||||
#define STATE_SIZE 48
|
||||
// size of nonce to be decrypted
|
||||
#define KEYSTREAM_SIZE 32
|
||||
// size of first uid^nonce byte to be rolled back to the initial key
|
||||
#define ROLLBACK_SIZE 8
|
||||
// number of nonces required to test to cover entire 48-bit state
|
||||
// I would have said it's 12... but bla goes with 100, so I do too
|
||||
#define NONCE_TESTS 100
|
||||
|
||||
// state pointer management
|
||||
extern __thread bitslice_t states[KEYSTREAM_SIZE+STATE_SIZE];
|
||||
extern __thread bitslice_t * restrict state_p;
|
||||
|
||||
// rewind to the point a0, at which KEYSTREAM_SIZE more bits can be generated
|
||||
#define crypto1_bs_rewind_a0() (state_p = &states[KEYSTREAM_SIZE])
|
||||
|
||||
// bitsliced bytewise parity
|
||||
#define bitsliced_byte_parity(n) (n[0].value ^ n[1].value ^ n[2].value ^ n[3].value ^ n[4].value ^ n[5].value ^ n[6].value ^ n[7].value)
|
||||
|
||||
// 48-bit crypto-1 states are normally represented using 64-bit values
|
||||
typedef union {
|
||||
uint64_t value;
|
||||
uint8_t bytes[8];
|
||||
} state_t;
|
||||
|
||||
// endianness conversion
|
||||
#define rev32(word) (((word & 0xff) << 24) | (((word >> 8) & 0xff) << 16) | (((word >> 16) & 0xff) << 8) | (((word >> 24) & 0xff)))
|
||||
#define rev64(x) (rev32(x)<<32|(rev32((x>>32))))
|
||||
#define rev_state_t rev64
|
||||
|
||||
// crypto-1 functions
|
||||
const bitslice_value_t crypto1_bs_bit(const bitslice_value_t input, const bool is_encrypted);
|
||||
const bitslice_value_t crypto1_bs_lfsr_rollback(const bitslice_value_t input, const bool is_encrypted);
|
||||
|
||||
// initialization functions
|
||||
void crypto1_bs_init();
|
||||
|
||||
// conversion functions
|
||||
void crypto1_bs_bitslice_value32(uint32_t value, bitslice_t bitsliced_value[], size_t bit_len);
|
||||
void crypto1_bs_convert_states(bitslice_t bitsliced_states[], state_t regular_states[]);
|
||||
|
||||
// debug print
|
||||
void crypto1_bs_print_states(bitslice_t *bitsliced_states);
|
||||
|
||||
#endif // _CRYPTO1_BS_H
|
||||
|
196
crypto1_bs_crack.c
Normal file
196
crypto1_bs_crack.c
Normal file
@ -0,0 +1,196 @@
|
||||
#include <malloc.h>
|
||||
#include "crypto1_bs_crack.h"
|
||||
|
||||
inline uint64_t crack_states_bitsliced(uint32_t **task){
|
||||
// the idea to roll back the half-states before combining them was suggested/explained to me by bla
|
||||
// first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
|
||||
uint64_t key = -1;
|
||||
#ifdef EXACT_COUNT
|
||||
size_t bucket_states_tested = 0;
|
||||
size_t bucket_size[(task[4]-task[3])/MAX_BITSLICES];
|
||||
#else
|
||||
const size_t bucket_states_tested = (task[4]-task[3])*(task[2]-task[1]);
|
||||
#endif
|
||||
// bitslice all the even states
|
||||
bitslice_t * restrict bitsliced_even_states[(task[4]-task[3])/MAX_BITSLICES];
|
||||
size_t bitsliced_blocks = 0;
|
||||
for(uint32_t const * restrict p_even = task[3]; p_even < task[4]; p_even+=MAX_BITSLICES){
|
||||
bitslice_t * restrict lstate_p = memalign(sizeof(bitslice_t), (STATE_SIZE+ROLLBACK_SIZE)*sizeof(bitslice_t));
|
||||
memset(lstate_p, 0x0, (STATE_SIZE)*sizeof(bitslice_t));
|
||||
// bitslice even half-states
|
||||
const size_t max_slices = (task[4]-p_even) < MAX_BITSLICES ? task[4]-p_even : MAX_BITSLICES;
|
||||
#ifdef EXACT_COUNT
|
||||
bucket_size[bitsliced_blocks] = max_slices;
|
||||
#endif
|
||||
for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
|
||||
// set even bits
|
||||
uint32_t e = *(p_even+slice_idx);
|
||||
for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
|
||||
if(e&1){
|
||||
lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
|
||||
}
|
||||
}
|
||||
}
|
||||
// compute the rollback bits
|
||||
for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
|
||||
// inlined crypto1_bs_lfsr_rollback
|
||||
const bitslice_value_t feedout = lstate_p[0].value;
|
||||
++lstate_p;
|
||||
const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
|
||||
const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
|
||||
lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
|
||||
lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
|
||||
lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
|
||||
lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
|
||||
lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
|
||||
lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
|
||||
}
|
||||
bitsliced_even_states[bitsliced_blocks++] = lstate_p;
|
||||
}
|
||||
// bitslice every odd state to every block of even half-states with half-finished rollback
|
||||
for(uint32_t const * restrict p_odd = task[1]; p_odd < task[2]; ++p_odd){
|
||||
// early abort
|
||||
if(keys_found){
|
||||
goto out;
|
||||
}
|
||||
|
||||
// set the odd bits and compute rollback
|
||||
uint64_t o = (uint64_t) *p_odd;
|
||||
lfsr_rollback_byte(&o, 0, 1);
|
||||
// pre-compute part of the odd feedback bits (minus rollback)
|
||||
bool odd_feedback_bit = parity(o&0x9ce5c);
|
||||
|
||||
crypto1_bs_rewind_a0();
|
||||
// set odd bits
|
||||
for(size_t state_idx = 0; state_idx < (STATE_SIZE-ROLLBACK_SIZE); o >>= 1, state_idx+=2){
|
||||
if(o & 1){
|
||||
state_p[state_idx] = bs_ones;
|
||||
} else {
|
||||
state_p[state_idx] = bs_zeroes;
|
||||
}
|
||||
}
|
||||
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
|
||||
|
||||
// set even and rollback bits
|
||||
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
|
||||
const bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx];
|
||||
size_t state_idx;
|
||||
// set even bits
|
||||
for(state_idx = 0; state_idx < (STATE_SIZE-ROLLBACK_SIZE); state_idx+=2){
|
||||
state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
|
||||
}
|
||||
// set rollback bits
|
||||
uint64_t lo = o;
|
||||
for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
|
||||
// set the odd bits and take in the odd rollback bits from the even states
|
||||
if(lo & 1){
|
||||
state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
|
||||
} else {
|
||||
state_p[state_idx] = bitsliced_even_state[state_idx];
|
||||
}
|
||||
|
||||
// set the even bits and take in the even rollback bits from the odd states
|
||||
if((lo >> 32) & 1){
|
||||
state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
|
||||
} else {
|
||||
state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef EXACT_COUNT
|
||||
bucket_states_tested += bucket_size[block_idx];
|
||||
#endif
|
||||
// pre-compute first keystream and feedback bit vectors
|
||||
const bitslice_value_t ksb = crypto1_bs_f20(state_p);
|
||||
const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-24].value ^ state_p[47-42].value);
|
||||
|
||||
// vector to contain test results (1 = passed, 0 = failed)
|
||||
bitslice_t results = bs_ones;
|
||||
|
||||
for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
|
||||
size_t parity_bit_idx = 0;
|
||||
bitslice_value_t fb_bits = fbb;
|
||||
bitslice_value_t ks_bits = ksb;
|
||||
state_p = &states[KEYSTREAM_SIZE-1];
|
||||
bitslice_value_t parity_bit_vector = bs_zeroes.value;
|
||||
|
||||
// highest bit is transmitted/received first
|
||||
for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
|
||||
// decrypt nonce bits
|
||||
const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
|
||||
const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
|
||||
|
||||
// compute real parity bits on the fly
|
||||
parity_bit_vector ^= decrypted_nonce_bit_vector;
|
||||
|
||||
// update state
|
||||
state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
|
||||
|
||||
// compute next keystream bit
|
||||
ks_bits = crypto1_bs_f20(state_p);
|
||||
|
||||
// for each byte:
|
||||
if((ks_idx&7) == 0){
|
||||
// get encrypted parity bits
|
||||
const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
|
||||
|
||||
// decrypt parity bits
|
||||
const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
|
||||
|
||||
// compare actual parity bits with decrypted parity bits and take count in results vector
|
||||
results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
|
||||
|
||||
// make sure we still have a match in our set
|
||||
// if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
|
||||
|
||||
// this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
|
||||
// the short-circuiting also helps
|
||||
if(results.bytes64[0] == 0
|
||||
#if MAX_BITSLICES > 64
|
||||
&& results.bytes64[1] == 0
|
||||
#endif
|
||||
#if MAX_BITSLICES > 128
|
||||
&& results.bytes64[2] == 0
|
||||
&& results.bytes64[3] == 0
|
||||
#endif
|
||||
){
|
||||
goto stop_tests;
|
||||
}
|
||||
// this is about as fast but less portable (requires -std=gnu99)
|
||||
// asm goto ("ptest %1, %0\n\t"
|
||||
// "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
|
||||
parity_bit_vector = bs_zeroes.value;
|
||||
}
|
||||
// compute next feedback bit vector
|
||||
fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
||||
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
||||
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
||||
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
||||
}
|
||||
}
|
||||
// all nonce tests were successful: we've found the key in this block!
|
||||
state_t keys[MAX_BITSLICES];
|
||||
crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
|
||||
for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
|
||||
if(get_vector_bit(results_idx, results)){
|
||||
key = keys[results_idx].value;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
stop_tests:
|
||||
// prepare to set new states
|
||||
crypto1_bs_rewind_a0();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
out:
|
||||
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
|
||||
free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
|
||||
}
|
||||
__sync_fetch_and_add(&total_states_tested, bucket_states_tested);
|
||||
return key;
|
||||
}
|
21
crypto1_bs_crack.h
Normal file
21
crypto1_bs_crack.h
Normal file
@ -0,0 +1,21 @@
|
||||
#ifndef _CRYPTO1_BS_CRACK_H
|
||||
#define _CRYPTO1_BS_CRACK_H
|
||||
#include <stdint.h>
|
||||
#include "crypto1_bs.h"
|
||||
#include "craptev1.h"
|
||||
uint64_t crack_states_bitsliced(uint32_t **task);
|
||||
size_t keys_found;
|
||||
size_t total_states_tested;
|
||||
size_t total_states;
|
||||
|
||||
// linked from crapto1.c file
|
||||
extern uint8_t lfsr_rollback_byte(uint64_t* s, uint32_t in, int fb);
|
||||
|
||||
#define EXACT_COUNT
|
||||
|
||||
// arrays of bitsliced states with identical values in all slices
|
||||
bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
|
||||
bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][STATE_SIZE];
|
||||
bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
|
||||
|
||||
#endif // _CRYPTO1_BS_CRACK_H
|
358
pwpiwi_proxmark3_hard_nested.patch
Normal file
358
pwpiwi_proxmark3_hard_nested.patch
Normal file
@ -0,0 +1,358 @@
|
||||
diff --git a/client/Makefile b/client/Makefile
|
||||
index 91e595d..dc3557f 100644
|
||||
--- a/client/Makefile
|
||||
+++ b/client/Makefile
|
||||
@@ -107,6 +107,7 @@ CMDSRCS = nonce2key/crapto1.c\
|
||||
aes.c\
|
||||
protocols.c\
|
||||
sha1.c\
|
||||
+ crypto1_bs.c \
|
||||
|
||||
ZLIBSRCS = deflate.c adler32.c trees.c zutil.c inflate.c inffast.c inftrees.c
|
||||
ZLIB_FLAGS = -DZ_SOLO -DZ_PREFIX -DNO_GZIP -DZLIB_PM3_TUNED
|
||||
diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c
|
||||
index b3893ea..4a0bd38 100644
|
||||
--- a/client/cmdhfmfhard.c
|
||||
+++ b/client/cmdhfmfhard.c
|
||||
@@ -20,18 +20,21 @@
|
||||
#include <pthread.h>
|
||||
#include <locale.h>
|
||||
#include <math.h>
|
||||
+#include <malloc.h>
|
||||
+#include <assert.h>
|
||||
#include "proxmark3.h"
|
||||
#include "cmdmain.h"
|
||||
#include "ui.h"
|
||||
#include "util.h"
|
||||
#include "nonce2key/crapto1.h"
|
||||
#include "parity.h"
|
||||
+#include "crypto1_bs.h"
|
||||
|
||||
// uint32_t test_state_odd = 0;
|
||||
// uint32_t test_state_even = 0;
|
||||
|
||||
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
|
||||
-#define GOOD_BYTES_REQUIRED 30
|
||||
+#define GOOD_BYTES_REQUIRED 28
|
||||
|
||||
|
||||
static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
|
||||
@@ -88,6 +91,8 @@ typedef struct noncelist {
|
||||
} noncelist_t;
|
||||
|
||||
|
||||
+static size_t nonces_to_bruteforce = 0;
|
||||
+static noncelistentry_t *brute_force_nonces[256];
|
||||
static uint32_t cuid;
|
||||
static noncelist_t nonces[256];
|
||||
static uint8_t best_first_bytes[256];
|
||||
@@ -169,6 +174,11 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
|
||||
p2->nonce_enc = nonce_enc;
|
||||
p2->par_enc = par_enc;
|
||||
|
||||
+ if(nonces_to_bruteforce < 256){
|
||||
+ brute_force_nonces[nonces_to_bruteforce] = p2;
|
||||
+ nonces_to_bruteforce++;
|
||||
+ }
|
||||
+
|
||||
nonces[first_byte].num++;
|
||||
nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
|
||||
nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
|
||||
@@ -1376,19 +1386,293 @@ static void free_statelist_cache(void)
|
||||
}
|
||||
}
|
||||
|
||||
+size_t keys_found = 0;
|
||||
+size_t bucket_count = 0;
|
||||
+statelist_t* buckets[128];
|
||||
+size_t total_states_tested = 0;
|
||||
+size_t thread_count = 4;
|
||||
+
|
||||
+// these bitsliced states will hold identical states in all slices
|
||||
+bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
|
||||
+
|
||||
+// arrays of bitsliced states with identical values in all slices
|
||||
+bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
|
||||
+bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
|
||||
+
|
||||
+#define EXACT_COUNT
|
||||
+
|
||||
+static const uint64_t crack_states_bitsliced(statelist_t *p){
|
||||
+ // the idea to roll back the half-states before combining them was suggested/explained to me by bla
|
||||
+ // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
|
||||
+ uint64_t key = -1;
|
||||
+#ifdef EXACT_COUNT
|
||||
+ size_t bucket_states_tested = 0;
|
||||
+ size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
|
||||
+#else
|
||||
+ const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
|
||||
+#endif
|
||||
+ bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
|
||||
+ size_t bitsliced_blocks = 0;
|
||||
+ uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
|
||||
+ for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even+=MAX_BITSLICES){
|
||||
+ bitslice_t * restrict lstate_p = memalign(sizeof(bitslice_t), (STATE_SIZE+ROLLBACK_SIZE)*sizeof(bitslice_t));
|
||||
+ memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
|
||||
+ // bitslice even half-states
|
||||
+ const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
|
||||
+#ifdef EXACT_COUNT
|
||||
+ bucket_size[bitsliced_blocks] = max_slices;
|
||||
+#endif
|
||||
+ for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
|
||||
+ uint32_t e = *(p_even+slice_idx);
|
||||
+ for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
|
||||
+ // set even bits
|
||||
+ if(e&1){
|
||||
+ lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ // compute the rollback bits
|
||||
+ for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
|
||||
+ // inlined crypto1_bs_lfsr_rollback
|
||||
+ const bitslice_value_t feedout = lstate_p[0].value;
|
||||
+ ++lstate_p;
|
||||
+ const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
|
||||
+ const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
|
||||
+ lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
|
||||
+ lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
|
||||
+ lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
|
||||
+ lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
|
||||
+ lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
|
||||
+ lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
|
||||
+ }
|
||||
+ bitsliced_even_states[bitsliced_blocks++] = lstate_p;
|
||||
+ }
|
||||
+ for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
|
||||
+ // early abort
|
||||
+ if(keys_found){
|
||||
+ goto out;
|
||||
+ }
|
||||
+
|
||||
+ // set the odd bits and compute rollback
|
||||
+ uint64_t o = (uint64_t) *p_odd;
|
||||
+ lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
|
||||
+ // pre-compute part of the odd feedback bits (minus rollback)
|
||||
+ bool odd_feedback_bit = parity(o&0x9ce5c);
|
||||
+
|
||||
+ crypto1_bs_rewind_a0();
|
||||
+ // set odd bits
|
||||
+ for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
|
||||
+ if(o & 1){
|
||||
+ state_p[state_idx] = bs_ones;
|
||||
+ } else {
|
||||
+ state_p[state_idx] = bs_zeroes;
|
||||
+ }
|
||||
+ }
|
||||
+ const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
|
||||
+
|
||||
+ for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
|
||||
+ const bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx];
|
||||
+ size_t state_idx;
|
||||
+ // set even bits
|
||||
+ for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
|
||||
+ state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
|
||||
+ }
|
||||
+ // set rollback bits
|
||||
+ uint64_t lo = o;
|
||||
+ for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
|
||||
+ // set the odd bits and take in the odd rollback bits from the even states
|
||||
+ if(lo & 1){
|
||||
+ state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
|
||||
+ } else {
|
||||
+ state_p[state_idx] = bitsliced_even_state[state_idx];
|
||||
+ }
|
||||
+
|
||||
+ // set the even bits and take in the even rollback bits from the odd states
|
||||
+ if((lo >> 32) & 1){
|
||||
+ state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
|
||||
+ } else {
|
||||
+ state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+#ifdef EXACT_COUNT
|
||||
+ bucket_states_tested += bucket_size[block_idx];
|
||||
+#endif
|
||||
+ // pre-compute first keystream and feedback bit vectors
|
||||
+ const bitslice_value_t ksb = crypto1_bs_f20(state_p);
|
||||
+ const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
|
||||
+ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
+ state_p[47-24].value ^ state_p[47-42].value);
|
||||
+
|
||||
+ // test keys
|
||||
+ bitslice_t results = bs_ones;
|
||||
+
|
||||
+ for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
|
||||
+ size_t parity_bit_idx = 0;
|
||||
+ bitslice_value_t fb_bits = fbb;
|
||||
+ bitslice_value_t ks_bits = ksb;
|
||||
+ state_p = &states[KEYSTREAM_SIZE-1];
|
||||
+ bitslice_value_t parity_bit_vector = bs_zeroes.value;
|
||||
+
|
||||
+ // highest bit is transmitted/received first
|
||||
+ for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
|
||||
+ // decrypt nonce bits
|
||||
+ const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
|
||||
+ const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
|
||||
+
|
||||
+ // compute real parity bits on the fly
|
||||
+ parity_bit_vector ^= decrypted_nonce_bit_vector;
|
||||
+
|
||||
+ // update state
|
||||
+ state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
|
||||
+
|
||||
+ // compute next keystream bit
|
||||
+ ks_bits = crypto1_bs_f20(state_p);
|
||||
+
|
||||
+ // for each byte:
|
||||
+ if((ks_idx&7) == 0){
|
||||
+ // get encrypted parity bits
|
||||
+ const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
|
||||
+
|
||||
+ // decrypt parity bits
|
||||
+ const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
|
||||
+
|
||||
+ // compare actual parity bits with decrypted parity bits and take count in results vector
|
||||
+ results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
|
||||
+
|
||||
+ // make sure we still have a match in our set
|
||||
+ // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
|
||||
+
|
||||
+ // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
|
||||
+ // the short-circuiting also helps
|
||||
+ if(results.bytes64[0] == 0
|
||||
+#if MAX_BITSLICES > 64
|
||||
+ && results.bytes64[1] == 0
|
||||
+#endif
|
||||
+#if MAX_BITSLICES > 128
|
||||
+ && results.bytes64[2] == 0
|
||||
+ && results.bytes64[3] == 0
|
||||
+#endif
|
||||
+ ){
|
||||
+ goto stop_tests;
|
||||
+ }
|
||||
+ // this is about as fast but less portable (requires -std=gnu99)
|
||||
+ // asm goto ("ptest %1, %0\n\t"
|
||||
+ // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
|
||||
+ parity_bit_vector = bs_zeroes.value;
|
||||
+ }
|
||||
+ // compute next feedback bit vector
|
||||
+ fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
||||
+ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
+ state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
||||
+ state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
||||
+ state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
||||
+ state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
||||
+ }
|
||||
+ }
|
||||
+ // all nonce tests were successful: we've found the key in this block!
|
||||
+ state_t keys[MAX_BITSLICES];
|
||||
+ crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
|
||||
+ for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
|
||||
+ if(get_vector_bit(results_idx, results)){
|
||||
+ key = keys[results_idx].value;
|
||||
+ goto out;
|
||||
+ }
|
||||
+ }
|
||||
+stop_tests:
|
||||
+ // prepare to set new states
|
||||
+ crypto1_bs_rewind_a0();
|
||||
+ continue;
|
||||
+ }
|
||||
+ }
|
||||
+out:
|
||||
+ for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
|
||||
+ free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
|
||||
+ }
|
||||
+ __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
|
||||
+ return key;
|
||||
+}
|
||||
+
|
||||
+static void* crack_states_thread(void* x){
|
||||
+ const size_t thread_id = (size_t)x;
|
||||
+ size_t current_bucket = thread_id;
|
||||
+ while(current_bucket < bucket_count){
|
||||
+ statelist_t * bucket = buckets[current_bucket];
|
||||
+ if(bucket){
|
||||
+ const uint64_t key = crack_states_bitsliced(bucket);
|
||||
+ if(key != -1){
|
||||
+ printf("Found key: %012lx\n", key);
|
||||
+ __sync_fetch_and_add(&keys_found, 1);
|
||||
+ break;
|
||||
+ } else if(keys_found){
|
||||
+ break;
|
||||
+ } else {
|
||||
+ printf("Cracking... %6.02f%%\n", (100.0*total_states_tested/(maximum_states)));
|
||||
+ }
|
||||
+ }
|
||||
+ current_bucket += thread_count;
|
||||
+ }
|
||||
+ return NULL;
|
||||
+}
|
||||
|
||||
-static void brute_force(void)
|
||||
+void brute_force(void)
|
||||
{
|
||||
if (known_target_key != -1) {
|
||||
PrintAndLog("Looking for known target key in remaining key space...");
|
||||
TestIfKeyExists(known_target_key);
|
||||
} else {
|
||||
- PrintAndLog("Brute Force phase is not implemented.");
|
||||
+ PrintAndLog("Brute force phase starting.");
|
||||
+ time_t start, end;
|
||||
+ time(&start);
|
||||
+ keys_found = 0;
|
||||
+
|
||||
+ crypto1_bs_init();
|
||||
+
|
||||
+ PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
|
||||
+ PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
|
||||
+ // convert to 32 bit little-endian
|
||||
+ crypto1_bs_bitslice_value32(rev32((best_first_bytes[0]^(cuid>>24))), bitsliced_rollback_byte, 8);
|
||||
+
|
||||
+ PrintAndLog("Bitslicing nonces...");
|
||||
+ for(size_t tests = 0; tests < NONCE_TESTS; tests++){
|
||||
+ uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
|
||||
+ uint8_t test_parity = brute_force_nonces[tests]->par_enc;
|
||||
+ // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
|
||||
+ crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
|
||||
+ // convert to 32 bit little-endian
|
||||
+ crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
|
||||
+ }
|
||||
+ total_states_tested = 0;
|
||||
+
|
||||
+ // count number of states to go
|
||||
+ bucket_count = 0;
|
||||
+ for (statelist_t *p = candidates; p != NULL; p = p->next) {
|
||||
+ buckets[bucket_count] = p;
|
||||
+ bucket_count++;
|
||||
+ }
|
||||
+
|
||||
+ // enumerate states using all hardware threads, each thread handles one bucket
|
||||
+ PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %lu states...", thread_count, bucket_count, maximum_states);
|
||||
+ pthread_t threads[thread_count];
|
||||
+ thread_count = sysconf(_SC_NPROCESSORS_CONF);
|
||||
+ for(size_t i = 0; i < thread_count; i++){
|
||||
+ pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
|
||||
+ }
|
||||
+ for(size_t i = 0; i < thread_count; i++){
|
||||
+ pthread_join(threads[i], 0);
|
||||
+ }
|
||||
+
|
||||
+ time(&end);
|
||||
+ unsigned long elapsed_time = difftime(end, start);
|
||||
+ PrintAndLog("Tested %lu states, found %u keys after %u seconds", total_states_tested, keys_found, elapsed_time);
|
||||
+ if(!keys_found){
|
||||
+ assert(total_states_tested == maximum_states);
|
||||
+ }
|
||||
+ // reset this counter for the next call
|
||||
+ nonces_to_bruteforce = 0;
|
||||
}
|
||||
-
|
||||
}
|
||||
|
||||
-
|
||||
int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
|
||||
{
|
||||
// initialize Random number generator
|
85
solve_bs.c
Normal file
85
solve_bs.c
Normal file
@ -0,0 +1,85 @@
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <unistd.h>
|
||||
#include <pthread.h>
|
||||
#include <sys/sysinfo.h>
|
||||
#include "craptev1.h"
|
||||
#include "crypto1_bs.h"
|
||||
#include "crypto1_bs_crack.h"
|
||||
|
||||
// linked from .so / .c files by bla
|
||||
extern uint64_t *readnonces(char* fname);
|
||||
|
||||
uint32_t **space;
|
||||
size_t thread_count;
|
||||
|
||||
void* crack_states_thread(void* x){
|
||||
const size_t thread_id = (size_t)x;
|
||||
int j;
|
||||
for(j = thread_id; space[j * 5]; j += thread_count) {
|
||||
const uint64_t key = crack_states_bitsliced(space + j * 5);
|
||||
if(key != -1){
|
||||
printf("Found key: %012lx\n", key);
|
||||
__sync_fetch_and_add(&keys_found, 1);
|
||||
break;
|
||||
} else if(keys_found){
|
||||
break;
|
||||
} else {
|
||||
printf("Cracking... %6.02f%%\n", (100.0*total_states_tested/(total_states)));
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]){
|
||||
if(argc != 3){
|
||||
printf("Usage: %s <nonces.txt> <uid>\n", argv[0]);
|
||||
return -1;
|
||||
}
|
||||
uint64_t *nonces = readnonces(argv[1]);
|
||||
uint32_t uid = strtoul(argv[2], NULL, 16);
|
||||
space = craptev1_get_space(nonces, 95, uid);
|
||||
total_states = craptev1_sizeof_space(space);
|
||||
|
||||
thread_count = get_nprocs_conf();
|
||||
pthread_t threads[thread_count];
|
||||
size_t i;
|
||||
|
||||
printf("Initializing BS crypto-1\n");
|
||||
crypto1_bs_init();
|
||||
printf("Using %u-bit bitslices\n", MAX_BITSLICES);
|
||||
|
||||
uint8_t rollback_byte = **space;
|
||||
printf("Bitslicing rollback byte: %02x...\n", rollback_byte);
|
||||
// convert to 32 bit little-endian
|
||||
crypto1_bs_bitslice_value32(rev32((rollback_byte)), bitsliced_rollback_byte, 8);
|
||||
|
||||
printf("Bitslicing nonces...\n");
|
||||
for(size_t tests = 0; tests < NONCE_TESTS; tests++){
|
||||
// pre-xor the uid into the decrypted nonces, and also pre-xor the uid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
|
||||
uint32_t test_nonce = uid^rev32(nonces[tests]);
|
||||
uint32_t test_parity = (nonces[tests]>>32)^rev32(uid);
|
||||
test_parity = ((parity(test_parity >> 24 & 0xff) & 1) | (parity(test_parity>>16 & 0xff) & 1)<<1 | (parity(test_parity>>8 & 0xff) & 1)<<2 | (parity(test_parity & 0xff) & 1) << 3);
|
||||
crypto1_bs_bitslice_value32(test_nonce, bitsliced_encrypted_nonces[tests], 32);
|
||||
// convert to 32 bit little-endian
|
||||
crypto1_bs_bitslice_value32(~(test_parity)<<24, bitsliced_encrypted_parity_bits[tests], 4);
|
||||
}
|
||||
|
||||
total_states_tested = 0;
|
||||
keys_found = 0;
|
||||
|
||||
printf("Starting %lu threads to test %lu states\n", thread_count, total_states);
|
||||
for(i = 0; i < thread_count; i++){
|
||||
pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
|
||||
}
|
||||
for(i = 0; i < thread_count; i++){
|
||||
pthread_join(threads[i], 0);
|
||||
}
|
||||
printf("Tested %lu states\n", total_states_tested);
|
||||
|
||||
craptev1_destroy_space(space);
|
||||
return 0;
|
||||
}
|
||||
|
85
solve_piwi.c
Normal file
85
solve_piwi.c
Normal file
@ -0,0 +1,85 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <unistd.h>
|
||||
#include <pthread.h>
|
||||
#include <sys/sysinfo.h>
|
||||
#include "craptev1.h"
|
||||
|
||||
#define rev32(word) (((word & 0xff) << 24) | (((word >> 8) & 0xff) << 16) | (((word >> 16) & 0xff) << 8) | (((word >> 24) & 0xff)))
|
||||
|
||||
uint64_t split(uint8_t p){
|
||||
return (((p & 0x8) >>3 )| ((p & 0x4) >> 2) << 8 | ((p & 0x2) >> 1) << 16 | (p & 0x1) << 24 );
|
||||
}
|
||||
|
||||
uint32_t uid;
|
||||
uint64_t *readnonces(char* fname){
|
||||
int i;
|
||||
FILE *f = fopen(fname, "r");
|
||||
uint64_t *nonces = malloc(sizeof (uint64_t) << 24);
|
||||
if(fread(&uid, 1, 4, f)){
|
||||
uid = rev32(uid);
|
||||
}
|
||||
fseek(f, 6, SEEK_SET);
|
||||
i = 0;
|
||||
while(!feof(f)){
|
||||
uint32_t nt_enc1, nt_enc2;
|
||||
uint8_t par_enc;
|
||||
if(fread(&nt_enc1, 1, 4, f) && fread(&nt_enc2, 1, 4, f) && fread(&par_enc, 1, 1, f)){
|
||||
nonces[i ] = split(~(par_enc >> 4)) << 32 | nt_enc1;
|
||||
nonces[i+1] = split(~(par_enc & 0xff)) << 32 | nt_enc2;
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
nonces[i] = -1;
|
||||
fclose(f);
|
||||
return nonces;
|
||||
}
|
||||
|
||||
uint32_t **space;
|
||||
size_t thread_count;
|
||||
size_t states_tested = 0;
|
||||
size_t total_states;
|
||||
size_t keys_found = 0;
|
||||
|
||||
void* crack_states_thread(void* x){
|
||||
const size_t thread_id = (size_t)x;
|
||||
int j;
|
||||
for(j = thread_id; space[j * 5]; j += thread_count) {
|
||||
uint64_t key = craptev1_search_partition(space + j * 5);
|
||||
states_tested = total_states - craptev1_sizeof_space(space+j*5);
|
||||
printf("Cracking... %6.02f%%\n", (100.0*states_tested/(total_states)));
|
||||
if(key != -1){
|
||||
printf("Found key: %012lx\n", key);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]){
|
||||
if(argc != 2){
|
||||
printf("Usage: %s <nonces.bin>\n", argv[0]);
|
||||
return -1;
|
||||
}
|
||||
uint64_t *nonces = readnonces(argv[1]);
|
||||
space = craptev1_get_space(nonces, 95, uid);
|
||||
total_states = craptev1_sizeof_space(space);
|
||||
|
||||
thread_count = get_nprocs_conf();
|
||||
pthread_t threads[thread_count];
|
||||
printf("Starting %lu threads to test %lu states\n", thread_count, total_states);
|
||||
size_t i;
|
||||
states_tested = 0;
|
||||
for(i = 0; i < thread_count; i++){
|
||||
pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
|
||||
}
|
||||
for(i = 0; i < thread_count; i++){
|
||||
pthread_join(threads[i], 0);
|
||||
}
|
||||
printf("Tested %lu states\n", states_tested);
|
||||
|
||||
craptev1_destroy_space(space);
|
||||
return 0;
|
||||
}
|
||||
|
110
solve_piwi_bs.c
Normal file
110
solve_piwi_bs.c
Normal file
@ -0,0 +1,110 @@
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <unistd.h>
|
||||
#include <pthread.h>
|
||||
#include <sys/sysinfo.h>
|
||||
#include "craptev1.h"
|
||||
#include "crypto1_bs.h"
|
||||
#include "crypto1_bs_crack.h"
|
||||
|
||||
uint64_t split(uint8_t p){
|
||||
return (((p & 0x8) >>3 )| ((p & 0x4) >> 2) << 8 | ((p & 0x2) >> 1) << 16 | (p & 0x1) << 24 );
|
||||
}
|
||||
|
||||
uint32_t uid;
|
||||
uint64_t *readnonces(char* fname){
|
||||
int i;
|
||||
FILE *f = fopen(fname, "r");
|
||||
uint64_t *nonces = malloc(sizeof (uint64_t) << 24);
|
||||
if(fread(&uid, 1, 4, f)){
|
||||
uid = rev32(uid);
|
||||
}
|
||||
fseek(f, 6, SEEK_SET);
|
||||
i = 0;
|
||||
while(!feof(f)){
|
||||
uint32_t nt_enc1, nt_enc2;
|
||||
uint8_t par_enc;
|
||||
if(fread(&nt_enc1, 1, 4, f) && fread(&nt_enc2, 1, 4, f) && fread(&par_enc, 1, 1, f)){
|
||||
nonces[i ] = split(~(par_enc >> 4)) << 32 | nt_enc1;
|
||||
nonces[i+1] = split(~(par_enc & 0xff)) << 32 | nt_enc2;
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
nonces[i] = -1;
|
||||
fclose(f);
|
||||
return nonces;
|
||||
}
|
||||
|
||||
uint32_t **space;
|
||||
size_t thread_count;
|
||||
|
||||
void* crack_states_thread(void* x){
|
||||
const size_t thread_id = (size_t)x;
|
||||
int j;
|
||||
for(j = thread_id; space[j * 5]; j += thread_count) {
|
||||
const uint64_t key = crack_states_bitsliced(space + j * 5);
|
||||
if(key != -1){
|
||||
printf("Found key: %012lx\n", key);
|
||||
__sync_fetch_and_add(&keys_found, 1);
|
||||
break;
|
||||
} else if(keys_found){
|
||||
break;
|
||||
} else {
|
||||
printf("Cracking... %6.02f%%\n", (100.0*total_states_tested/(total_states)));
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]){
|
||||
if(argc != 2){
|
||||
printf("Usage: %s <nonces.bin>\n", argv[0]);
|
||||
return -1;
|
||||
}
|
||||
uint64_t *nonces = readnonces(argv[1]);
|
||||
space = craptev1_get_space(nonces, 95, uid);
|
||||
total_states = craptev1_sizeof_space(space);
|
||||
|
||||
thread_count = get_nprocs_conf();
|
||||
pthread_t threads[thread_count];
|
||||
size_t i;
|
||||
|
||||
printf("Initializing BS crypto-1\n");
|
||||
crypto1_bs_init();
|
||||
printf("Using %u-bit bitslices\n", MAX_BITSLICES);
|
||||
|
||||
uint8_t rollback_byte = **space;
|
||||
printf("Bitslicing rollback byte: %02x...\n", rollback_byte);
|
||||
// convert to 32 bit little-endian
|
||||
crypto1_bs_bitslice_value32(rev32((rollback_byte)), bitsliced_rollback_byte, 8);
|
||||
|
||||
printf("Bitslicing nonces...\n");
|
||||
for(size_t tests = 0; tests < NONCE_TESTS; tests++){
|
||||
// pre-xor the uid into the decrypted nonces, and also pre-xor the uid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
|
||||
uint32_t test_nonce = uid^rev32(nonces[tests]);
|
||||
uint32_t test_parity = (nonces[tests]>>32)^rev32(uid);
|
||||
test_parity = ((parity(test_parity >> 24 & 0xff) & 1) | (parity(test_parity>>16 & 0xff) & 1)<<1 | (parity(test_parity>>8 & 0xff) & 1)<<2 | (parity(test_parity &0xff) & 1) << 3);
|
||||
crypto1_bs_bitslice_value32(test_nonce, bitsliced_encrypted_nonces[tests], 32);
|
||||
// convert to 32 bit little-endian
|
||||
crypto1_bs_bitslice_value32(~(test_parity)<<24, bitsliced_encrypted_parity_bits[tests], 4);
|
||||
}
|
||||
|
||||
total_states_tested = 0;
|
||||
keys_found = 0;
|
||||
|
||||
printf("Starting %lu threads to test %lu states\n", thread_count, total_states);
|
||||
for(i = 0; i < thread_count; i++){
|
||||
pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
|
||||
}
|
||||
for(i = 0; i < thread_count; i++){
|
||||
pthread_join(threads[i], 0);
|
||||
}
|
||||
printf("Tested %lu states\n", total_states_tested);
|
||||
|
||||
craptev1_destroy_space(space);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user