Files
holycard-cracker/crypto1_bs/craptev1-v1.1/craptev1.c

473 lines
14 KiB
C

/**
* CraptEV1
* Copyright (c) 2015-2016 blapost@gmail.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted for non-commercial use only.
*
* No redistribution. No modifications.
*/
#include "craptev1.h"
static uint8_t halfsum[2][1 << 20];
static uint8_t filterflip[1 << 20];
static uint8_t filterlut[1 << 20];
static uint32_t hsum_off[2][0x89];
static double prob[257];
void __attribute__((constructor)) craptev1_init() {
uint32_t i, j, s, t, p, q;
uint32_t esum, osum;
uint64_t ocnt[9] = {0}, ecnt[9] = {0};
if(**halfsum)
return;
for(i = 0; i < 1 << 20; i++) {
osum = esum = 0;
for(j = 0; j < 1 << 4; j++) {
s = i << 4 | j;
t = filter(s) ^ filter(s >> 1) ^ filter(s >> 2) ^ filter(s >> 3);
osum += t ^ filter(i);
esum += t;
}
halfsum[0][i] = esum >> 1;
halfsum[1][i] = osum >> 1;
ecnt[esum >> 1]++;
ocnt[osum >> 1]++;
filterflip[i] = filter(i) ^ filter(i ^ 1);
filterlut[i] = filter(i);
}
for(p = 0; p < 9; ++p)
for(q = 0; q < 9; ++q)
prob[8 * (4 * p + 4 * q - p * q)] += ecnt[p] * ocnt[q];
for(i = 0; i < 257; ++i)
prob[i] /= 1ull << 40;
for(j = 0; j < 1 << 4; ++j)
for(i = 0; i < 1 << 20; ++i) {
hsum_off[0][halfsum[0][j << 16 | i >> 4] << 4 | halfsum[0][i]]++;
hsum_off[1][halfsum[1][j << 16 | i >> 4] << 4 | halfsum[1][i]]++;
}
}
#define filter(x) (filterlut[(x) & 0xfffff])
#define LF_POLY (0x8708040029CE5C)
#define ROR(x, n) ((x) >> (n) | (x) << (32 - (n)))
#define DIVIDE(s, p) ROR((unsigned)(((int)(s - (p) * 32)) / (int)(4 - (p))), 3)
#define FACTOR(s, p) ((s & 1) || ((p) == 4 ? s == 128 : DIVIDE(s, (p)) < 9))
/** getsum0
* Calculate the sum property at time zero
*/
uint32_t getsum0(uint64_t *nonce) {
uint32_t unique[256] = {0};
uint32_t i, numfound = 0 , sum = 0;
for(i = 0; nonce[i] != -1 && numfound < 256; ++i)
if(!unique[0xff & nonce[i]]) {
sum += parity(0xff & nonce[i]) ^ BIT(nonce[i], 32);
unique[0xff & nonce[i]] = 1;
numfound++;
}
return numfound == 256 ? sum : -1;
}
/** eliminate
* build initial sorted candidate list based on sumproperties
*/
uint32_t* eliminate(uint32_t sum0, uint32_t sum8, uint32_t isodd) {
uint32_t y, yy, *set, p, r, *wrt[0x89] = {0}, *w, irr8 = sum8 >> 1 == 64;
uint8_t *hsum = halfsum[isodd], i, irr0 = sum0 >> 1 == 64;
set = w = malloc((sizeof(uint32_t) << 24) + 4);
for(p = 0; p != 4 && !irr0; p = (p + 1) * 2 % 11)
for(r = 0; r != 4; r = (r + 1) * 2 % 11)
if(FACTOR(sum0, p) && FACTOR(sum8, r))
w = (wrt[p << 4 | r] = w) + hsum_off[isodd][p << 4 | r];
for(r = 0; r != 4 && irr0; r = (r + 1) * 2 % 11)
for(p = 0; p != 4; p = (p + 1) * 2 % 11)
if(FACTOR(sum0, p) && FACTOR(sum8, r))
w = (wrt[p << 4 | r] = w) + hsum_off[isodd][p << 4 | r];
for(p = 0; p != 4; p = (p + 1) * 2 % 11)
if(FACTOR(sum0, p) && FACTOR(sum8, 4))
w = (wrt[p << 4 | 4] = w) + hsum_off[isodd][p << 4 | 4];
for(p = 0; p < 9; p = (p + 1) * 2 % 11)
if(FACTOR(sum0, 4) && FACTOR(sum8, p))
w = (wrt[64 | p] = w) + hsum_off[isodd][64 | p];
for(y = 0; y < 1 << 20; ++y)
for(yy = 0; yy < 1 << 4; ++yy)
if(wrt[i = (p = hsum[yy << 16 | y >> 4]) << 4 | (r = hsum[y])]) {
*wrt[i] = (irr0 ? p == 4 : p) << 28 | (irr8 ? r == 4 : r) << 24;
*wrt[i]++ |= yy << 20 | y;
}
return *w = -1, set;
}
/** differential
* prune more states using filter flips and differential analysis
*/
uint32_t differential(uint32_t *list, uint32_t isodd, uint8_t byte,
uint8_t bbyte, uint16_t bsum8, uint32_t flip) {
uint32_t j, possible, k, invariant, i;
uint32_t y, yprime, lsb, jdiv;
uint32_t *read, *write, bit;
uint8_t *hsum = halfsum[isodd];
if(!flip && (bsum8 & 1)) return 0;
for(i = 0; i < 8 && BIT(byte, i) == BIT(bbyte, i); ++i);
k = (8 - i + !!isodd) >> 1;
for(write = read = list; *read != -1; ++read){
y = *read;
yprime = *read & ~((1 << k) - 1);
for(j = i, jdiv = k; j < 7 + !!isodd; ++j) {
invariant = BIT(byte, j) ^ BIT(bbyte, j);
invariant ^= BIT(y, 2 + jdiv) ^ BIT(yprime, 2 + jdiv);
invariant ^= filter(y >> jdiv) ^ filter(yprime >> jdiv);
if((j & 1) != !!isodd && invariant != 0) break;
j += (j & 1) != !!isodd;
jdiv--;
bit = BIT(y, jdiv);
bit ^= BIT(byte, j) ^ BIT(bbyte, j);
bit ^= BIT(y, 3 + jdiv) ^ BIT(yprime, 3 + jdiv);
bit ^= BIT(y, 4 + jdiv) ^ BIT(yprime, 4 + jdiv);
yprime |= bit << jdiv;
}
for(lsb = possible = 0; lsb < 1 << jdiv; ++lsb){
if(FACTOR(bsum8, hsum[0xfffff & (yprime | lsb)]))
if((flip & 1) == 0 || filterflip[0xfffff & (yprime | lsb)])
if((flip & 2) == 0 || filterflip[0xfffff & (yprime | lsb) >> 1])
if((flip & 4) == 0 || filterflip[0xfffff & (yprime | lsb) >> 2])
if((flip & 16) == 0 || !filterflip[0xfffff & (yprime | lsb)])
if((flip & 32) == 0 || !filterflip[0xfffff & (yprime | lsb) >> 1])
if((flip & 64) == 0 || !filterflip[0xfffff & (yprime | lsb) >> 2])
possible = 1;
}
if(possible) *write++ = y;
}
*write = -1;
return (uint32_t)(read - write);
}
/** binom
* calculate the binomial coefficient
*/
static double binom(uint32_t n, uint32_t k) {
double num = 1.0;
uint32_t i, t = (n - k > k) ? n - k : k;
if(k > n)
return 0;
for(i = t + 1; i <= n; ++i)
num *= i;
for(i = 2; i <= n - t; ++i)
num /= i;
return num;
}
/** predictsum
* passable prediction logic based on hypergeometric distribution
*/
static uint32_t predictsum(uint64_t *nonces, uint8_t byte, uint32_t *conf) {
uint32_t k, K, n, N = 256, bestK = 0, i;
uint8_t seen[256] = {0}, nonceb1, nonceb2;
double num, sum = 0.0, max = 0.0;
for(i = k = n = 0; nonces[i] != -1; ++i){
nonceb1 = nonces[i];
nonceb2 = nonces[i] >> 8;
if(nonceb1 == byte && !seen[nonceb2]) {
seen[nonceb2] = 1;
++n;
k += parity(nonceb2) ^ BIT(nonces[i], 40);
}
}
for(K = 0; K <= 256; K += 1) {
num = binom(K, k) * (binom(N - K, n - k) / binom(N, n));
sum += num * prob[K];
max = (num > max) ? bestK = K, num : max;
}
*conf = 100.0 * max * prob[bestK] / sum + 0.5;
return bestK;
}
/** getpredictions
* guess the sumproperty at time 8 for all possible first 8 bits
*/
uint32_t getpredictions(uint64_t *nonces, int tresh, uint32_t *pred) {
uint32_t i, none = 1, conf, sum8;
for(i = 0; i < 256; ++i){
sum8 = predictsum(nonces, i, &conf);
none &= pred[i] = (conf >= tresh) ? sum8 | conf << 16 : 129;
}
return !none;
}
/** bestb
* poor heuristic to find reasonable base for differential analysis
*/
uint8_t bestb(uint32_t *pred) {
uint32_t i, j, h, k;
uint32_t max = 0;
for(i = 0; i < 256; ++i) {
if(pred[i] & 1) continue;
for(j = 0, h = i; j < 256; ++j) {
if(i == j || (pred[j] & 1)) continue;
for(k = 0; k < 8 && BIT(i, k) == BIT(j, k); ++k);
h += k << 8;
}
max = (h > max) ? h : max;
}
return max;
}
/** findflips
* Detect some filter flip conditions
*/
uint32_t findflips(uint64_t *nonces, uint32_t *flips) {
uint32_t parities[256] = {0};
uint32_t i, status = 0;
for(i = 0; nonces[i] != -1; ++i)
parities[nonces[i] & 0xff] = BIT(nonces[i], 32);
for(i = 0; i < 0x100; ++i){
flips[i] = 0;
flips[i] |= (parities[i] == parities[i ^ 0x80]) << 0;
flips[i] |= (parities[i] == parities[i ^ 0x20]) << 1;
flips[i] |= (parities[i] == parities[i ^ 0x08]) << 2;
flips[i] |= (parities[i] == parities[i ^ 0x40]) << 8;
flips[i] |= (parities[i] == parities[i ^ 0x10]) << 9;
flips[i] |= (parities[i] == parities[i ^ 0x04]) << 10;
status |= flips[i];
}
for(i = 0; i < 0x30; ++i) {
flips[i] |= ((~flips[i] & 0x001) == 0x001) << 4;
flips[i] |= ((~flips[i] & 0x101) == 0x101) << 12;
flips[i] |= ((~flips[i] & 0x103) == 0x103) << 5;
flips[i] |= ((~flips[i] & 0x303) == 0x303) << 13;
flips[i] |= ((~flips[i] & 0x307) == 0x307) << 6;
flips[i] |= ((~flips[i] & 0x707) == 0x707) << 14;
}
for(i = 0; i < 0x100; ++i){
if(status & 1 << 0) flips[i] &= ~0x6066;
if(status & 1 << 1) flips[i] &= ~0x4044;
if(status & 1 << 8) flips[i] &= ~0x6640;
if(status & 1 << 9) flips[i] &= ~0x4400;
if((status & 7) == 7) flips[i] &= ~0x400;
}
return status;
}
static void __lfsr_rollback(uint64_t *s, uint32_t in) {
uint32_t bit, i;
uint64_t state = *s;
for(i = 0; i < 8; ++i) {
bit = state & 1;
state = state >> 32 | (state & 0xffffff) << 31;
bit ^= parity64(LF_POLY & state);
bit ^= in >> (7 - i);
bit ^= filter(state);
state |= (uint64_t)bit << 55;
}
*s = state;
}
static uint8_t inline paritycheck(uint64_t *s, uint32_t in) {
uint32_t feedin, i;
uint8_t ret = in >> 8;
for(i = 0; i < 8; ++i) {
ret ^= feedin = filter(*s);
feedin ^= parity64(LF_POLY & *s) ^ in >> i;
*s = *s << 32 | (uint32_t)(*s >> 31);
*s &= ~1ull;
*s |= feedin & 1;
}
return ret ^ filter(*s);
}
#define FOR_EACH_BYTE(X) (X) && (X) && (X) && (X)
uint64_t brute(uint32_t **task) {
uint32_t *oe = task[2], *p, i;
uint64_t *e, *eb, *ee, savestate, state, o, key;
eb = ee = malloc((1 << 20) + sizeof(uint64_t) * (task[4] - task[3]));
for(p = task[3]; p < task[4]; ++p) {
*ee = (uint64_t)*p << 32;
__lfsr_rollback(ee++, **task);
}
for(; task[1] < oe; ++task[1]) {
o = *task[1];
__lfsr_rollback(&o, 0);
for(e = eb; e < ee; ++e) {
state = savestate = o ^ *e;
i = 0;
p = task[0] + 10;
while(FOR_EACH_BYTE(!paritycheck(&state, *p++))) {
state = savestate;
if(++i == 100) goto out;
}
}
}
free(eb);
return -1;
out:
free(eb);
for(key = 0, i = 23; i < 24; --i)
key = key << 2 | BIT(state, i ^ 3) << 1 | BIT(state, 32 | (i ^ 3));
return key;
}
/** sumsplit
* Split sorted list of candidates into ranges. Based on msb.
*/
void sumsplit(uint32_t *list, uint32_t **ranges, uint32_t sum0, uint32_t sum8) {
uint32_t *last, p, i;
ranges[*list >> 24] = list;
for(last = list; *last != -1; ++last)
if(!ranges[*last >> 24]) {
ranges[*last >> 24] = last;
ranges[256 | *(last - 1) >> 24] = last;
}
ranges[256 | *(last - 1) >> 24] = last;
for(i = 0, p = 1; i < 16 && sum0 >> 1 == 64; i += p ^= 1)
ranges[p << 8 | 0x20 | i] = ranges[p << 8 | 0x10 | i];
for(i = 0; i < 32 && sum8 >> 1 == 64; ++i)
ranges[i << 4 | 2] = ranges[i << 4 | 1];
for(i = 0; i < 32 && (sum8 & 1); ++i)
ranges[i << 4 | 3] = ranges[i << 4];
}
/** mkspace
* split candidate lists into list of lists by matching halfsums
*/
uint32_t **mkspace(uint32_t *o, uint32_t *e, uint32_t sum0, uint32_t sum8) {
uint32_t *ohead[512] = {0}, **otail = ohead + 256, p, q, r, s;
uint32_t *ehead[512] = {0}, **etail = ehead + 256, **jobs, **j;
sumsplit(o, ohead, sum0, sum8);
sumsplit(e, ehead, sum0, sum8);
j = 1024 + (jobs = malloc(sizeof(uint32_t*) << 14));
*j++ = o;
*j++ = e;
for(p = 0; p != 4; p = (p + 1) * 2 % 11) {
for(r = 0; r != 4; r = (r + 1) * 2 % 11) {
q = (sum0 >> 1 == 64) ? !(p & 1) : DIVIDE(sum0, p);
s = (sum8 >> 1 == 64) ? !(r & 1) : DIVIDE(sum8, r);
if(q < 9 && s < 9 && ohead[p << 4 | r] && ehead[q << 4 | s]) {
*j++ = (uint32_t*)jobs;
*j++ = ohead[p << 4 | r];
*j++ = otail[p << 4 | r];
*j++ = ehead[q << 4 | s];
*j++ = etail[q << 4 | s];
}
}
}
return *j = 0, jobs;
}
/** craptev1_get_space
* Derive reduced search space from list of nested nonces.
* - returns a zero terminated list of partitions (5 pointers each)
* add 5 to the return value to get a pointer to the second partition.
* - uid is stored for use by search functions, it can be omitted.
*/
uint32_t** craptev1_get_space(uint64_t *nonces, uint32_t tresh, uint32_t uid) {
uint32_t sum0, sum8, pred[256], haspred, flips[256];
uint32_t *olist, *elist, i, **space, byte, *pre, b;
uint64_t t;
sum0 = getsum0(nonces);
if(sum0 == -1) return 0;
haspred = getpredictions(nonces, tresh, pred);
byte = haspred ? bestb(pred): 0xa5;
sum8 = pred[byte] & 0xffff;
findflips(nonces, flips);
olist = eliminate(sum0, sum8, 1);
elist = eliminate(sum0, sum8, 0);
for(i = 0; i < 256; ++i) {
differential(olist, 1, byte, i, pred[i], flips[i] & 255);
differential(elist, 0, byte, i, pred[i], flips[i] >> 8);
}
space = mkspace(olist, elist, sum0, sum8);
pre = (uint32_t*)space;
pre[0] = byte ^ uid >> 24;
pre[1] = uid;
for(i = 0, pre += 10; i < 400;)
for(b = 24, t = *nonces++; b < 32; b -= 8, t >>= 8, ++i)
pre[i] = parity((t ^ t >> 32) & 255) << 8 | ((t ^ uid >> b) & 255);
return space + 1026;
}
/** craptev1_sizeof_space
* Calculate the size of the search space
*/
uint64_t craptev1_sizeof_space(uint32_t **space) {
uint64_t i, c = 0, o, e;
for(i = 0; space[i]; i += 5) {
o = space[i + 2] - space[i + 1];
e = space[i + 4] - space[i + 3];
c += o * e;
}
return c;
}
/** craptev1_destroy_space
* Free all memory associated with a search space.
*/
void craptev1_destroy_space(uint32_t **space) {
free(*--space);
free(*--space);
free(space - 1024);
}
/** craptev1_search_partition
* Search one partition of the search space. Return key if found.
*/
uint64_t craptev1_search_partition(uint32_t **partition) {
return brute(partition);
}
/** craptev1_search_space
* Search entire search space.Return key if found.
*/
uint64_t craptev1_search_space(uint32_t **space) {
uint64_t i, key = -1;
for(i = 0; space[i] && key == -1; i += 5)
key = brute(space + i);
return key;
}